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Foreword

For a lot of people (even scientists and engineers) cloud computing is still a strange
new paradigm. Some of them are even convinced that it is a new word for grid
computing!

In fact, cloud computing is a new key discipline of high-performance comput-
ing (HPC) sophisticated IT technologies in order to treat some of the major HPC
challenges and enabling trusted technical computing solutions for 21st century cus-
tomers. Cloud computing is a technology that uses the Internet and central remote
servers to maintain data and applications. Cloud computing allows consumers and
businesses to use applications without installation and access their personal les at
any computer with Internet access. This technology allows for much more ef cient
computing by centralizing storage, memory, processing, and bandwidth. Cloud com-
puting provides ICT resources in a dynamic and scalable manner over a network.
According to the National Institute of Standards and Technology, the ve essential
characteristics of the cloud are the following: on-demand self-service, broad network
access, resource pooling, rapid elasticity, and measured services.

The applications of cloud computing are huge and impact nearly all sectors. For
example, some automotive rms are convinced that the future lies in cloud comput-
ing: in some recent vehicles, the software used in the vehicle online applications
system is not stored in the vehicle but runs off the rm backend. The advantage of
this is that the applications can be continually updated in the cloud and new appli-
cations released to the automotive rm’s customers without the need of visiting a
workshop!

This time these tremendous civil applications are not derived from military ap-
plications such as the Internet or GPS. Cloud computing is only beginning to be
used in Military Intelligence Fusion (MIF). The advantages of cloud computing are
already applied to MIF in the sharing of data and application. Other known uses
of cloud computing in the U.S. military sector are the following: the Rapid Access
Computing Environment (RACE) used by the U.S. Department of Defense (DoD)
and the U.S. military owned private cloud computing to Afghanistan. Nevertheless,
cloud computing technology has not yet been effectively exploited in military em-
bedded applications because of performance and correctness constraints. Some of
these strategic embedded military applications are as follows: critical command and
control systems, in- eld data and information analysis, image data processing on-
board missiles, UAVs, . . . The main challenges of cloud computing are the need for
wide bandwidth, concern for security, concern for malfunctions of the cloud, legal
and political issues and concern for the rights of users. I am personally convinced
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that cloud computing will be relevant for new-generation high safety level critical
systems (for both civil and military applications) because of the following important
advantages: unlimited IT infrastructure exibility and increased mission exibility.

A strategic application of cloud computing is the treatment of the data wave.
How to manage and derive continual value from your data? In terms of “Big Data”,
biology will pass physics within two years. For example, next-generation
sequencers produce between six and eight TeraBytes (TB) of data per day! The
challenges in next-generation genome centers are managing and processing oceans
of data (TBs per day from multiple instruments, fast access and processing) and
providing more services at a lower cost per genome.

The book by Frédéric Magoulès, Jie Pan, and Fei Teng is unique; it is the rst
book treating two key aspects of cloud computing: resource scheduling and alloca-
tion and “Big Data” treatment. For Big Data, the MapReduce model (parallel data

ow system) is explained in detail and two implementation frameworks of MapRe-
duce, Hadoop and Gridgain, are presented. These technologies enable us to “focus”
the data wave in order to go to data analytics, visualization, and archiving. The
book clearly highlights and presents these tools as a framework allowing distributed
processing of large data sets across clusters of computers using a simple program-
ming model. It also shows how they are designed to scale up from single servers to
thousands of machines, each offering local computation and storage.

This book is addressing students specialized in high performance computing but
also scientists and engineers from numerous sectors having to deal with Big Data:
bioscience (pharmacological trials), nancial and insurance services (automated and
algorithm trading, fraud detection), science and research (large scale experiments as
for example the large hadron collider, satellites feeds, medical imaging, . . . ), edu-
cational research, legacy (sales data, accounting data and customer data), retailers
(customer buying analysis, inventory management), government and military agen-
cies (signal analysis, trend analysis).

This book will also allow a deeper understanding of the technical characteristics
of the major best-in-class cloud computing providers (public, private, government)
and associated services such as Infrastructure as a Service (IaaS) and Software as a
Service (SaaS). It also highlights tutorial approaches to the main cloud characteris-
tics such as global reach, ease of provisioning, business agility, deployability, and
manageability.

Jacques Duysens
General Manager - Chief Operating Of cer

SILKAN



Preface

Cloud computing has emerged as a hot topic of research, and several books have
been published on this topic. This present book concentrates on data-intensive
computing and scheduling for cloud computing, with a particular focus on new
development of classical techniques, and recent methods and innovative algorithms
appearing in this eld. This volume presents in nine chapters a selection of some
concepts, models, methods, algorithms, and software used in cloud computing
including resource management, MapReduce, multi-dimensional data analysis,
multiple group-by query, and real-time scheduling.

Chapter 1 begins with a general introduction of cloud computing. Although there
is disagreement over what cloud computing is, Chapter 1 tries to re ne some
representations and gives an unbiased and general de nition. This de nition is not
just an overall concept, but describes system architecture, deployment models, and
essential features. Cloud computing is still an evolving paradigm, and it integrates
many existing technologies. The brief evolution history of cloud computing
described in Chapter 1 helps us clarify the conditions, opportunities, and challenges
existing in cloud development. Functionally speaking, cloud computing is a service
provision model, in which software, platform, infrastructure, data, and hardware
can be directly delivered as a service to end customers. Chapter 1 presents the
service characteristics from technical, qualitative, and economic points of view.
After analyzing existing commercial products and research projects, several
challenges in terms of middleware, programming model, resource management, and
business model are highlighted.

In Chapter 2, the cloud service scheduling hierarchy is presented in detail
together with scheduling problems. The scheduling problems can be split into a
user level and a system level. The former focuses on the issue of resource provision
between providers and customers, which is solved by economic models. The latter
refers to meta-task execution, a sub-optimal solution of which is given by heuristics
to speed up the process of nding a good enough answer. For commercial purposes,
cloud services heavily emphasize time guarantee. The ability to satisfy timing
constraints of such real-time applications plays a signi cant role in the cloud
environment. Chapter 2 examines and introduces some particular scheduling
algorithms for real-time tasks, that is, priority-based strategies. Their
implementations are discussed in depth and analyzed to match real-time constraints.

xix
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Cloud computing can cut IT costs and at the same time herald in a new era of
agility in IT operations. A fundamental element is the concept of a datacenter, in
which IT solutions are considered as services and are as easily purchased as other
consumption models. Therefore, resource provision takes on market dealing
behaviors, not just match-making scheduling between tasks and machines. The
market mechanism is an effective method to control electronic resources. In
Chapter 3, resource competition among cloud customers and reasonable allocation
to keep market equilibrium, are analyzed. Speci cally, Chapter 3 presents a game
theoretical auction to solve the resource allocation problem in clouds, and proposes
original practicable algorithms for user bidding and auctioneer pricing. Such
algorithms support nancially smart customers with an effective forecasting method
and help an auctioneer decide on an equilibrium resource price, so that they can
potentially solve resource allocation problems in cloud computing.

An another important aspect of cloud computing is multi-dimensional data
analysis applications, since enterprises generate massive amounts of data every day.
To analyze this data, the raw data is extracted, transformed, cleaned, stored under
multi-dimensional data models, and nally queried by the user. Recently, new
technologies have been adopted in multi-dimensional data analysis applications.
These new technologies include in-memory query processing, search
engine technologies, and enhanced hardware. In Chapter 4, the features of
multi-dimensional data analysis queries and three distributed system architectures
including shared-memory, shared-disk, and shared-nothing are described. A survey
of existing research on accelerating data analytical query processing is also
provided, including pre-computing, data indexing, and data partitioning.
Pre-computing is an approach to bartering storage space for computing time. The
aggregates of all possible dimension combinations are calculated and stored to
rapidly answer the forthcoming queries. Data indexing technologies can appear in
several forms such as B-tree/B+-tree index, projection index, Bitmap index,
Bit-Sliced index, join index, inverted index, together with a special type of index
used in distributed architecture. Classical data partitioning technology consists of
horizontal partitioning, or vertical partitioning. Chapter 4 presents the application
of partitioning methods on a multi-dimensional dataset, followed by the
parallelization of query processing. A special emphasis on the parallelization of
various operators, including scan, merge, split, selection, update, sorting,
aggregation, duplicate removal, and join is presented in order to ensure
multi-dimensional data analysis in a cloud data center.

As mentionned previously, along with the development of hardware and
software, more and more data is generated at a rate much faster than ever. Although
data storage is inexpensive, and the issues of storing large volumes of data can be
solved, processing large volumes of data is becoming a challenge for data analysis
software. The feasible approach to handling large-scale data processing is to divide
and conquer. Solutions based on a parallel model, for instance the parallel database
composed of shared-nothing distributed architectures, can be considered. Relations
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are partitioned into pieces of data, and the computations of one relational algebra
operator proceeded in parallel on each piece of data. The traditional parallel
attempts in data intensive processing, like parallel database, were suitable when
data scale was moderate because parallel databases do not scale well. MapReduce
is a new parallel programming model, which turns a new page in data parallelism
history. The MapReduce model is a parallel data ow system that works through
data partitioning across machines, each machine independently running the
single-node logic. Chapter 5 focuses on the MapReduce model, and its extended
model, MapCombineReduce. Two implementation frameworks of MapReduce,
Hadoop and GridGain are presented as an example. Job scheduling issues in
MapReduce are then analyzed, followed by the distributed data storage underlying
MapReduce, including distributed le systems and an ef cient enhanced storage
system based on a cache mechanism. Finally, Chapter 5 discusses transactional data
management and analytical data management in the cloud processed with
MapReduce. As shared-nothing parallel databases and MapReduce systems use
similar hardware, Chapter 5 focuses on comparing them and by presenting the
related work on a hybrid solution combining these two into one system.

In Chapter 6, in order to manipulate large-scale multi-dimensional data,
MapReduce-based multi-dimensional data aggregation is presented, followed by the
introduction of multiple group-by query. GridGain is chosen over Hadoop, as the
MapReduce supporting framework because of its low latency. A detailed work ow
analysis of the GridGain MapReduce procedure is presented. Two implementations
of multiple group-by query based on MapReduce, initial and optimized
implementations are illustrated. The initial implementation of the multiple group-by
query is based on a direct realization, which implements the ltering phase within
mappers and the aggregating phase within the reducer. In the optimized
implementation of the multiple group-by query, a combiner as a pre-aggregator,
which does the aggregation (pre-aggregation) on a local computing node level
before starting the reducer, is adopted. With such a pre-aggregator, the amount of
intermediate data transferred over the network is signi cantly reduced. As
GridGain does not support a combiner component, the combiner through merging
two successive GridGain’s MapReduces is constructed. Chapter 6 presents
experiments run on a public French academic platform named Grid’5000, which
demonstrates that the optimized version has better speed and better scalability. At
the end of Chapter 6, a formal estimation of execution time is given for both
implementations; estimations which could also serve as a valuable reference for
other MapReduced applications.

In a distributed shared-nothing architecture, like the MapReduce system, there
are two approaches to optimize query processing. The rst one is to choose an
optimal job scheduling policy in order to complete the calculation within a
minimum time. Load balancing, data skew, and straggler node are some issues
involved in job scheduling. The second approach focuses on the optimization of
individual jobs constituting the parallel query processing. Individual job
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optimization needs to consider the characteristics of involved computations,
including the low-level optimization of detailed operations. Chapter 7 discusses the
optimization work for accelerating individual jobs during the parallel processing
procedure of the multiple group-by query. Then, the speed-up performance of
implementations over horizontally partitioned data and that of vertically partitioned
data during this procedure are presented. An estimation model for the query
processing execution time, and speci cally for estimating the values of various
parameters for data horizontal partitioning-based query processing is then
presented. Finally, Chapter 7 introduces a new compressed data structure, which
works with vertical partition in order to support distinct-value-wise job scheduling.

Since MapReduce has been bene cial to a wide spectrum of data-intensive
applications such as search indexing, mining social networks, recommendation
services, and advertising backends, accurate time guarantee turns out to be more
important for better QoS than ever. Therefore, the problem of scheduling real-time
tasks on a MapReduce cluster will be investigated in Chapter 8. A MapReduce
scheduling algorithm combining the particular characteristics of MapReduce is thus
introduced, followed by some tuning leading to enhanced scheduling ef ciency.
Finally, Chapter 8 proposes an original method to indicate the reliability of a
schedulability test. From the aspect of system, a test with high reliability can
guarantee high system utilization.

Cloud computing implies that computing is not only operated on local computers,
but on centralized facilities by third-party computing and storage utilities. Cloud
solutions seem to state master keys for the IT enterprises that suffer from budget
concerns and economic woes, and a number of industry projects have been started
to create a global, multi-data center, open-source cloud computing testbed for indus-
try, research, and education. Encouraging opportunities also brings out correspond-
ing challenges. Cloud computing is easily confused with several existing technolo-
gies including grid computing, utility computing, web service, and virtualization.
Scheduling problems in cloud computing are worth reconsidering by researchers and
engineers. In this book, the resource allocation problem in terms of economic aspects
to meet business requirements is addressed, together with the real-time schedulability
constraint to provide the cloud data center with technical supports. In order to utilize
cloud computing to serve as the infrastructure of multi-dimensional data analysis ap-
plications, the combination of traditional parallel database optimization mechanisms
and cloud computing is expected. In this book, classical or original methods of
cloud computing to satisfy commercial software requirements are presented. Chap-
ter 9 draws a brief summary of this book and raises many interesting questions and
issues that deserve further research, including (i) choosing suitable serialization or
de-serialization algorithms to deal with mapper objects and intermediate results; (ii)
extending calculations to a larger computing scale; (iii) utilizing cloud computing
to process large datasets; (iv) enriching business models for cloud providers; (v)
expanding schedulability bound to more complicated systems; (vi) improving relia-
bility of on-line schedulability tests for cloud data centers. The performance issues
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addressed in this book represent an important aspect in cloud computing, and could
provide a useful reference for people who want to study and utilize MapReduce and
cloud computing platforms.

The various technologies presented in this book demonstrate the wide aspects of
interest in cloud computing, and the many possibilities and venues that exist in the
research in this area. This interest is only going to further evolve, and many exciting
developments are still awaiting us.

Frédéric Magoulès
Ecole Centrale Paris, France

Jie Pan
Klee Group, France

Fei Teng
Southwest Jiaotong University, China
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Chapter 1

Overview of cloud computing

1.1 Introduction

This chapter begins with the general introduction of cloud computing, followed by
the retrospect of cloud evolution history and comparison with several related tech-
nologies. Through analyzing system architecture, deployment model and service
type, the characteristics of cloud computing are concluded from technical, functional
and economic aspects. After that, current efforts both from commercial and research
perspectives are presented in order to capture challenges and opportunities in this
domain.

1.1.1 Cloud definitions

Since 2007, the term Cloud has become one of the most common buzz words in
the IT industry. Lots of researchers try to de ne cloud computing from different
application aspects, but there is not a consensus de nition of it. Among the many
de nitions, we choose three widely quoted as follows

I. Foster [Foster et al., 2008]: “A large-scale distributed computing
paradigm that is driven by economies of scale, in which a pool of ab-
stracted virtualized, dynamically-scalable, managed computing power,
storage, platforms, and services are delivered on demand to external
customers over the Internet.”

As an academic representative, Foster focuses on several speci c features that differ
from other distributed computing paradigms. Cloud computing, in which comput-
ing entities are virtualized and delivered as services, is massively scalable. These
services are dynamically con gured and driven by economies of scale.

Gartner [Plummer et al., 2008]: “A style of computing where scalable
and elastic IT capabilities are provided as a service to multiple external
customers using Internet technologies.”

Gartner, being an IT consulting company, examines qualities of cloud computing
mostly from the point of view of industry. Functional characteristics are empha-
sized in this de nition, such as whether cloud computing is scalable, elastic, service
offering, and Internet based.

1
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NIST [Mell and Grance, 2010]: “Cloud computing is a model for en-
abling convenient, on-demand network access to a shared pool of con-

gurable computing resources (e.g., networks, servers, storage, appli-
cations, and services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction.”

Compared with the above two de nitions, U.S. National Institute of Standards and
Technology provides a relatively more objective and speci c de nition, which not
only de nes cloud concept overall, but also speci es essential characteristics of cloud
computing, delivery and deployment models.

1.1.2 System architecture

Clouds are usually referred to as a large pool of computing and/or storage re-
sources, which can be accessed via standard protocols with an abstract interface [Fos-
ter et al., 2008]. There is four-layer architecture for cloud computing as shown in
Figure 1.1. The fabric layer contains the raw hardware level resources, such as com-

FIGURE 1.1: System architecture.

pute resources, storage resources, and network resources. The uni ed resource layer
contains resources that have been virtualized so that they can be exposed to upper
layer and end users as integrated resources. The platform layer adds a collection of
specialized tools, middleware, and services on top of the uni ed resources to pro-
vide a development and/or deployment platform. The application layer contains the
applications that would run in the clouds.
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1.1.3 Deployment models

Clouds can be deployed in different fashions, depending on the usage scopes.
There are four primary cloud deployment models.

Public cloud. The public cloud is the standard cloud computing paradigm, in
which a service provider makes resources, such as applications and storage, available
to the general public over the Internet. Service providers charge on a ne-grained
utility computing basis. Examples of public clouds include Amazon Elastic Com-
pute Cloud (EC2), IBM’s Blue Cloud, Sun Cloud, Google AppEngine and Windows
Azure Services Platform.

Private cloud. A private cloud looks more like a marketing concept than the tra-
ditional mainstream sense. It describes a proprietary computing architecture that
provides services to a limited number of people on internal networks. Organizations
needing accurate control over their data will prefer a private cloud, so they can get all
the scalability, metering, and agility bene ts of a public cloud without ceding con-
trol, security, and recurring costs to a service provider. Both eBay and HP CloudStart
yield private cloud deployments.

Hybrid cloud. A hybrid cloud uses a combination of public cloud, private cloud
and even local infrastructures, which is typical for most IT enterprises [Keith and
Burkhard, 2010]. Hybrid strategy is proper placement of workloads depending upon
cost and operational and compliance factors. Major vendors including HP, IBM, Or-
acle and VMware create appropriate plans to leverage a mixed environment, with the
aim of delivering services to the business. Users can deploy an application hosted on
a hybrid infrastructure, in which some nodes are running on real physical hardware
and others on cloud server instances.

Community cloud. A community cloud overlaps with Grids to some extent. It
refers to several organizations in a private community sharing the cloud infrastruc-
ture. The organizations usually have similar concerns about mission, security re-
quirements, policy, and compliance considerations. A community cloud can be fur-
ther aggregated by a public cloud to build up a cross-boundary structure.

1.1.4 Cloud characteristics

As a general resource provisioning model, cloud computing integrates a number
of existing technologies that have been applied in grid computing [Magoulès et al.,
2009], [Magoulès, 2009], utility computing, service oriented architectures, internet
of things, outsourcing, etc. That is the reason why the cloud is mistaken for “the same
old stuff with a new label.” In this section, we distinguish between the technical,
qualitative, and economic aspects of cloud computing.
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Technical aspects. Technical characteristics are the foundation that ensures other
functional and economic requirements. Not all technology is (absolutely) new, but
might be enhanced to realize a speci c feature, directly or as a pre-condition.

• Virtualization. Virtualization is an essential characteristic of cloud comput-
ing. Virtualization in clouds refers to a multi-layer hardware platform, operat-
ing system, storage device, network resources, etc.

The rst prominent feature of virtualization is the ability to hide the techni-
cal complexity from users, so it can improve the independence of cloud ser-
vices. The second is that, physical resources can be ef ciently con gured and
utilized, considering that multiple applications are run on the same machine.
Third, quick recovery and fault tolerance are permitted, because the virtual
environment can be easily backed up and migrated with no interruption in ser-
vice [Cafaro and Aloisio, 2010].

• Multi-tenancy. Multi-tenancy is a highly requisite issue in clouds, which al-
lows sharing of resources and costs across multiple users.

Multi-tenancy brings resource providers many bene ts, for example, central-
ization of infrastructure in locations with lower costs, and improvement of
utilization and ef ciency with high peak-load capacity. Tenancy information,
which is stored in separate databases but altered concurrently, should be well
maintained for isolated tenants. Otherwise, some problems such as data pro-
tection will arise.

• Security. Security is one of the largest concerns for adoption of cloud com-
puting. There is no reason to doubt the importance of security in any system
dealing with sensitive and private data. In order to gain the potential clients,
providers must supply the certi cate of security. For example, data should be
fully segregated from one to another, and an ef cient replication and recovery
mechanism should be prepared if a disaster occurs. Besides that, a contractual
commitment is desired or ensured for investigative support.

In terms of complexity, on the one hand, the complexity of security is increased
when data is distributed over a wider area or greater number of devices in
multi-tenant systems which are shared by unrelated users. On the other hand,
the complexity reduction is necessary, because “ease of use” ability can attract
more potential clients.

• Programming environment. Programming environment is essential to ex-
ploit cloud features. It should be capable of addressing issues such as multi-
ple administrative domains, large variations in resource heterogeneity, perfor-
mance stability, exception handling in highly dynamic environments, etc.

System interface adopts web services’ APIs, which provide a standards-based
framework for accessing and integrating with and among cloud services. A
browser, applied as the interface, has attributes such as being intuitive, easy-
to-use, standards-based, service-independent and multi-platform supported.
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Through pre-de ned APIs, users can access, con gure and program cloud ser-
vices.

Qualitative aspects. Qualitative characteristics refer to qualities or properties of
cloud computing, rather than speci c technological requirements. One qualitative
feature can be realized in multiple ways depending on different providers.

• Elasticity. Elasticity means that the provision of services is elastic and adapt-
able, which allows the users to request the service near real-time without en-
gineering for peak loads. The services are measured in ne-grain, so that the
amount of offering can perfectly match a consumer’s usage. Performance is
monitored and consistent.

• Availability. Availability refers to a relevant capability that satis es speci c
requirements of the outsourced services. In many use cases, QoS metrics such
as response time and throughput must be guaranteed, so as to ensure advanced
quality guarantees of cloud users.

• Reliability. Reliability represents the ability to ensure constant system op-
eration without disruption. Using redundant sites, the possibility of losing
data and code dramatically decreases so that cloud computing is suitable for
business continuity and disaster recovery. Reliability is a particular QoS re-
quirement, focusing on prevention of loss.

• Agility. Agility is a basic requirement for cloud computing. Cloud providers
should be capable of on-line reaction to changes in resource demand and en-
vironmental conditions. At the same time, efforts are made by clients to
re-provision an application from an in-house infrastructure to SaaS vendors.
Agility requires both sides to provide self management capabilities.

Economic aspects. Economic features make cloud computing distinct, compared
with other computing paradigms. In a commercial environment, service offerings
are not limited to an exclusive technological perspective, but extend to a broader
understanding of business needs.

• Pay-as-you-go. Pay-as-you-go is a common aproach to cloud computing,
which means users pay according to the actual consumption of resource. Tra-
ditionally, users have to be equipped with all software and hardware infrastruc-
ture before computing starts, and maintain it during the computing process.
Cloud computing reduces cost of infrastructure maintenance and acquisition,
so it can help enterprises, especially small to medium sized, reduce time to
market and get return on investment.

• Operational expenditure. Operational expenditure is greatly reduced and
converted to operational expenditure [Böhm et al., 2010]. The infrastructure
is typically provided by a third-party and does not need to be purchased for
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one-time or infrequent intensive computing tasks, so it is easier for the users
to enter the computing world. Minimal or no IT skills are required for im-
plementation. Pricing on a utility computing basis is ne-grained with usage-
based options, so cloud providers should mask this pricing granularity with
long-term, xed price agreements considering the customer’s convenience.

• Energy-ef ciency. Energy-ef ciency is due to the ability of clouds to reduce
the consumption of unused resources. Computers are administrated centrally,
so additional costs of energy consumption as well as carbon emission can be
better controlled than in uncooperative cases. In addition, green IT issues are
subject to both software stack and hardware level.

1.2 Cloud evolution

Although the idea of cloud computing is not new, it has rapidly become a new
trend in the information and communication technology domain and has gained sig-
ni cant commercial success over past years. No one can deny that cloud computing
will play a pivotal role in the next decade. Why has cloud computing not emerged
before? This section looks back over the development history of cloud computing.

1.2.1 Getting ready for the cloud

Datacenter. Even faster than Moore’s law, the number of servers and datacenters
has increased dramatically over the past few years. Datacenter has turned out to
become the reincarnation of the mainframe concept. It is easier to build a large-
scale commodity-computer datacenter than ever before, just gathering these building
blocks together on a parking lot and connecting them to the Internet.

Internet. Recently, network performance has been improving rapidly. Wired,
wireless and 4th generation mobile communication make Internet available to most
of the planet. Cities and towns are wired with hotspots. Transportation such as
air, train or maritime is also equipped with satellite based wi- or undersea ber-
optic cable. People can connect to Internet, virtually anywhere and at anytime. The
universal, high-speed, broadband Internet laid the foundation for the widespread ap-
plications of cloud computing.

Terminals. The PC is no longer the central computing device, various electronic
devices including MP3, SmartPhone, Tablet, Set-top box, PDA, notebook have be-
come new terminals that meet the personal computing requirement. Besides, re-
peated data synchronization among different terminals is time-consuming, and fre-
quent faults occur. In such cases, a solution that allows individuals to access personal
data anywhere and from any device is needed.
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1.2.2 Brief history

Along with the maturity of objective conditions (software, hardware), many ex-
isting technologies, results and ideas can be realized, updated, merged and further
developed.

Amazon played a key role in the development of cloud computing by initially rent-
ing their datacenter to external customers for personal computing use. In 2006, they
launched Amazon EC2 and S3 on a utility computing basis. After that, several ma-
jor vendors released cloud solutions one after another, including Google, IBM, Sun,
HP, Microsoft, Forces.com, Yahoo and so on. Since 2007, the number of trademarks
covering cloud computing brands, goods, and services has increased at an almost
exponential rate.

At the same time, cloud computing is also a much favored research topic. In
2007, Google, IBM, and a number of universities announced a research project, the
Academic Cloud Computing Initiative (ACCI), aimed at addressing the challenges
of large-scale distributed computing. Since 2008, several open source projects have
gradually appeared. For example, Eucalyptus is the rst API-compatible platform
for deploying private clouds. OpenNebula deploys private and hybrid clouds and
federates different modes of clouds.

In July 2010, SiteonMobile was announced by HP for emerging markets where
people are more likely to access the Internet via mobile phones rather than comput-
ers. With more and more people owning smartphones, mobile cloud computing has
become a potent trend. Several Mobile network operators such as Orange, Vodafone
and Verizon have started to offer cloud computing services for companies.

In March 2011, the Open Networking Foundation which consists of 23 IT com-
panies, was founded by Deutsche Telekom, Facebook R©, Google R©, Microsoft R©,
Verizon R©, and Yahoo R©. This nonpro t organization supports a new cloud initia-
tive called Software-De ned Networking. The initiative is meant to speed up inno-
vation through simple software changes in telecommunications networks, wireless
networks, datacenters and other networking areas.

A simple account of cloud development history is presented in Figure 1.2.

FIGURE 1.2: Cloud development history.
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1.2.3 Comparison with related technologies

Cloud computing is a natural evolution of widespread adoption of virtualization,
service-oriented architecture, autonomic and utility computing. It emerges as a new
computing paradigm to provide reliable, customized, and quality of service guaran-
teeing dynamic computing environments for end-users, so it is easily confused with
several similar computing paradigms such as utility computing, grid computing, and
autonomic computing.

Utility computing. Utility computing was initialized in the 1960s. John McCarthy
coined the term computer utility in a speech given to celebrate MIT’s centennial “If
computers of the kind I have advocated become the computers of the future, then
computing may someday be organized as a public utility just as the telephone sys-
tem is a public utility. The computer utility could become the basis of a new and
important industry.” Generally, utility computing considers the computing and stor-
age resources as a metered service like water, electricity, gas, and telephony utility.
The customers can use the utility services immediately, whenever and wherever they
need, without paying for the initial cost of the devices. This idea was very popular
in the late 1960s, but faded by the mid-1970s as the devices and technologies of that
time were simply not ready. Recently, the utility idea has resurfaced in new forms
such as grid computing and cloud computing.

Utility computing is virtualized so that the amount of storage or computing power
available is considerably larger than that of a single time-sharing computer. The
back-end servers such as the computer cluster and supercomputer are used to realize
the virtualization.

Since the late 90s, utility computing has resurfaced. HP launched the Utility Data
Center to provide the IP billing-on-tap services. PolyServe Inc. offers a clustered le
system based on commodity server and storage hardware that creates highly avail-
able utility computing environments for mission-critical applications and workload
optimized solutions, speci cally tuned for bulk storage, high-performance comput-
ing, vertical industries such as nancial services, seismic processing, and content
serving. Thanks to these utilities, including database and le service, customers can
independently add servers or storage as needed.

Grid computing. Grid computing emerged in the mid 90’s. Ian Foster integrated
distributed computing, object-oriented programming and web services to “coin the
grid computing infrastructure.” “A Grid is a type of parallel and distributed system
that enables the sharing, selection, and aggregation of geographically distributed au-
tonomous resources dynamically at runtime depending on their availability, capa-
bility, performance, cost, and users’ quality-of-service requirements.” [Foster et al.,
2001] The de nition explains that a grid is actually a cluster of networked, loosely
coupled computers which works as a super and virtual mainframe to perform thou-
sands of tasks. It can also divide the huge application job into several subjobs and
make each run on large-scale machines.
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Generally speaking, grid computing goes through three different generations
[Roure et al., 2004]. The rst generation was marked by the early metacomput-
ing environment, such as FAFNER and I-WAY. The second generation was rep-
resented by the development of core grid technologies, grid resource management
(e.g., GLOBUS, LEGION); resource brokers and schedulers (e.g., CONDOR, PBS)
and grid portals (e.g., GRID SPHERE). The third generation saw the convergence be-
tween grid computing and web services technologies (e.g., WSRF, OGSI). It moves
to a more service oriented approach that exposes the grid protocols using web service
standards.

Autonomic computing. Autonomic computing was rst proposed by IBM in
2001, that is “autonomic computing performs tasks that IT professionals choose to
delegate to the technology according to policies. Adaptable policy rather than hard
coded procedure determines the types of decisions and actions that autonomic ca-
pabilities perform.” [Parashar and Hariri, 2005] Considering the sharply increasing
number of devices, the heterogeneous and distributed computing systems are more
and more dif cult to anticipate, design and maintain. The complexity of manage-
ment is becoming the limiting factor of future development. Autonomic computing
focuses on the self-management ability of the computer system. It overcomes the
rapidly growing complexity of computing systems management and reduces the bar-
riers that complexity poses to further growth.

In the area of multi-agent systems, several self-regulating frameworks are
proposed, but most of these architectures are centralized, which mainly reduces
management costs and seldom considers enabling complex software systems and
providing innovative services. IBM de ned the self-managing system which can
automatically process con guration of the components (Self-Con guration),
automatic monitoring and control of resources to ensure the optimal (Self-Healing),
monitor and optimalize the resources (Self-Optimization) and proactive
identi cation and protection from arbitrary attacks (Self-Protection), only with the
input information of policies de ned by humans [Kephart and Chess, 2003]. In
other words, the autonomic system uses high-level rules to check and optimize its
status and automatically adapt itself to changing conditions.

According to the above introductions to the three computing paradigms, we
can summarize the relationship among them. Utility computing is concerned with
whether the packing computing resources can be used as a metered service on the
basis of the user’s needs. It is indifferent to the organization of the resources, both in
the centralized and distributed system. Grid computing is conceptually similar to the
canonical Foster de nition of cloud computing, but does not consider the economic
entities. Autonomic computing stresses the self management of computer systems,
which is only one feature of cloud computing. All in all, having grid technologies,
autonomic characteristics, and utility bills, cloud computing can be seen as a natural
next step from the grid-utility model.



10 Cloud Computing: Data-Intensive Computing and Scheduling

1.3 Cloud services

Since a cloud is an underlying delivery mechanism, computing ability can be pro-
visioned as services, basically on three levels: software, platform, and infrastruc-
ture [Armbrust et al., 2009].

FIGURE 1.3: Cloud services.

Software as a service. Software as a Service (SaaS) is a software delivery model
in which applications are accessed by users using a simple interface such as a web
browser over the Internet. The users are not concerned with the underlying cloud
infrastructure including network, servers, operating systems, storage, platform, etc.
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This model also eliminates the need to install and run the application on the local
computers. The term SaaS has been popularized by Salesforce.com, which dis-
tributes business software on a subscription basis, rather than on a traditional on-
premise basis. One of the best well known is the solution for its Customer Rela-
tionship Management (CRM). Now SaaS has become a common delivery model for
most business applications, including accounting, collaboration and management.
Applications such as social media, of ce software, and online games enrich the fam-
ily of SaaS-based services, for instance, web Mail, Google Docs, Microsoft online,
NetSuit, MMOG Games, Facebook, etc.

Platform as a service. Platform as a Service (PaaS) offers a high-level integrated
environment to build, test, deploy and host customer-created or acquired applica-
tions. Generally, developers accept some restrictions on the type of software they
can write in exchange for built-in application scalability. Customers of PaaS do not
need to manage the underlying infrastructure as SaaS users, but need to have control
over the deployed applications and their hosting environment con gurations.

PaaS offerings mainly aim at facilitating application development and related man-
agement issues. Some are intended to provide a generalized development environ-
ment, and some only provide hosting-level services such as security and on-demand
scalability. Typical examples of PaaS are Google App Engine, Windows Azure, En-
gine Yard, Force.com, Heroku, MTurk, etc.

Infrastructure as a service. Infrastructure as a Service (IaaS) provisions process-
ing, storage, networks, and other fundamental computing resources to users. IaaS
users can deploy and run arbitrary applications, software, and operating systems on
the infrastructure that can scale up and down dynamically based on resource needs.

Computing service allows users to rent a provider’s virtual machines, or even an
entire datacenter. The user sends programs and related data, while the vendor’s com-
puter does the computation processing and returns the result. The infrastructure is
virtualized, exible, scalable, and manageable to meet user needs. Examples of
IaaS include Amazon EC2, VPC, IBM Blue Cloud, Eucalyptus, FlexiScale, Joyent,
Rackspace Cloud, etc.

Data service concerns the access of users to remote data in various formats and
from multiple sources. This remote data can be operated just like on a local disk.
Amazon S3, SimpleDB, SQS and Microsoft SQL are data service products.

Figure 1.3 shows the relationship among cloud users, cloud services, and cloud
providers. Clients equipped with basic devices, Internet and web browsers can di-
rectly use software, platform, storage, and computing resources as pay-as-you-go
services. If an Internet protocol connection is established, cloud services can be
shared within any one of the service layers. For example, PaaS can consume IaaS of-
ferings, and meanwhile, deliver platform supporting services to SaaS. At the bottom,
the datacenter consists of computer hardware and software products that are specif-
ically designed for the delivery of cloud services, including cloud-speci c operating
systems, multi-core processors, networks, disks, etc.
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1.4 Cloud projects

We nish the state-of-the-art efforts made by both commercial and academic cir-
cles. Major vendors have invested in forthright progress in the area of global cloud
promotion, while comparatively, research organizations based on their funding prin-
ciples and interest, contribute to cloud technologies in an indirect way.

1.4.1 Commercial products

In the last few years, middleware and platforms which involve multiple level ser-
vices in heterogeneous, distributed systems, have emerged. Commercial cloud solu-
tions have augmented dramatically and promote organizational shift from company-
owned assets to per-use service-based models. The best known cloud projects are
Amazon Web Service, IBM SmartCloud, Eucalyptus, FlexiScale, Joyent, Azure, En-
gine Yard, Heroku, Force.com, RightScale, Netsuite, Google Apps, etc.

Amazon is the pioneer of cloud computing. In 2002, Amazon began to provide
online computing services through the Internet. End users, not limited to developers
can access these web services over HTTP, using Representational State Transfer and
SOAP protocols. All services are billed on usage, but how usage is measured for
billing varies from service to service [Yi et al., 2010]. Among them, the two most
popular are Amazon EC2 and Amazon S3, which are typical representatives of IaaS.
The former rents virtual machines for running local computing applications, and the
latter offers online storage, which has the same infrastructure as Amazon.com uses.

Amazon EC2. Amazon EC2 [Amazon EC2, 2011] allows users to create a vir-
tual machine, named instance, through an Amazon Machine Image. An instance
functions as a virtual private server that contains desired software and hardware.
Roughly, instances are classi ed in six categories: standard, micro, high-memory,
high-CPU, cluster-GPU, and cluster compute, each of which is subdivided into dif-
ferent con gurations, such as memory, number of virtual cores, storage, platform,
I/O performance and API. Besides that, EC2 supports security control of network
access, instance monitoring, multi-location processing, etc.

Amazon S3. Amazon S3 [Amazon S3, 2011] provides a highly durable storage
infrastructure that can be used to store and retrieve data on the internet. This ser-
vice is bene cial to developers by making computing more scalable. S3 stores data
redundantly on multiple devices and supports version control to recover from both
unintended user actions and application failures

Google App Engine. Google App Engine [Google App Engine, 2011], released in
2008, is a platform for developing and hosting web applications in multiple servers
and data centers. In terms of PaaS, GAP is written to be language dependent, and



Overview of cloud computing 13

only supports Python and Java, so the runtime environment on GAP is limited. Com-
pared to IaaS, GAP makes it easy to develop scalable applications, but can only run
a limited range of applications designed for that infrastructure.

MapReduce. MapReduce [Dean and Ghemawat, 2008] is the best known pro-
gramming model introduced by Google that can support distributed computing on
large clusters. It can carry out map and reduction operations process in parallel.
The advantage of MapReduce is that it can ef ciently handle signi cantly larger
datasets than common servers and that it can quickly recover from partial failure of
servers or storage during the operation. MapReduce is widely used both in industry
and academic research. Google developed patented framework, while the Hadoop
is open source with free license. Moreover, many projects like Twister, Greenplum,
GridGain, Phoenix, Mars, CouchDB, Disco, Skynet, Qizmt, and Meguro implement
the MapReduce programming model in different languages including C++, C#, Er-
lang, Java, Ocaml, Perl, Python, Ruby, etc.

Dryad. The Dryad [Dryad, 2011] processing framework was developed by
Microsoft as a declarative programming model on top of the computing and storage
infrastructure. DryadLINQ aims at writing large-scale data parallel applications on
large dataset clusters of computers. DryadLINQ enables developers to use
thousands of machines, each with multiple processors or cores, without knowing
anything about concurrent programming. It supports automatic parallelization and
serialization by translating LINQ programs into distributed Dryad computations.

Other common programming models include All-Paris, Mesh-up, Sector/Sphere
and Mortar, etc.

1.4.2 Research projects

Besides initiatives by enterprises, a number of academic projects have been devel-
opped to address challenges including stable testbed, standardization, open source
reference implementation, and more open source solutions. The most active projects
in Europe and North America include XtreemOS, OpenNebula, FutureGrid, elas-
ticLM, gCube, ManuCloud, RESERVOIR, SLA@SOI, Contrail, ECEE, NEON,
VMware, Tycoon, DIET, BEinGRID, etc.

XtreemOS. XtreemOS [Xtreemos, 2011] is an open source distributed operation
system for grids. The project was initialized by INRIA in 2006, and the rst stable
release published in 2010.

XtreemOS strives to be a uniform computing platform by integrating heteroge-
neous infrastructures, from mobile devices to clusters. It provides three services
including application execution management, data management, and virtual organi-
zation management.
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Although XtreemOS was originally designed for grids, it can also be seen as an
alternative for cloud computing, owing to the fact that it is relevant in the context
of virtualized distributed computing infrastructure. Hence, its potential is to support
cooperation and resource sharing over cloud federations.

OpenNebula. OpenNebula [OpenNebula, 2011] is an open source project aiming
at managing datacenters’ virtual infrastructure to build IaaS clouds. It was estab-
lished by Complutense University of Madrid in 2005, and released its rst software
in 2008.

It supports private cloud creation based on local virtual infrastructure in data-
centers, and has the capabilities in management of user, virtual network, multi-tier
services, and physical infrastructures. It also supports combination of the local re-
sources and remote commercial clouds to build hybrid clouds, in which local com-
puting capacity is supplemented by single or multiple clouds to better serve user
access requests. In addition, it can be used as interfaces to turn local infrastructure
into a public cloud.

FutureGrid. FutureGrid [FutureGrid, 2011] is a test-bed for grid and cloud com-
puting. It is a cooperative project launched in 2010 between Grid’5000 and TeraGrid.

FutureGrid builds the federation of multiple clouds with a large geographical dis-
tribution, and allows researchers to study the range from authentication, authoriza-
tion, scheduling, virtualization, middleware design, interface design and cybersecu-
rity, to the optimization of grid-enabled and cloud-enabled computational schemes.
The advantage is that it offers a vivid cloud platform similar to a real commercial
cloud infrastructure. Moreover, it integrates several open source technologies to cre-
ate an easy-to-use environment, such as Xen, Nimbus, Vine, Hadoop, etc.

DIET. DIET [DIET, 2011] is a project aiming at implementing distributed schedul-
ing strategies on grids and clouds, initiated by INRIA in 2000.

DIET developed scalable middleware for a multi-agent system, in which clients
submit computation requests to a scheduler to nd an available server on the grid. In
order to facilitate further research in cloud computing, it supplements cloud-speci c
elements into the scheduler and adds an on-demand resource provision model and an
economy-based resource model to test provision heuristics.

SLA@SOI. SLA@SOI [SLA@SOI, 2011] is a European project aiming at evalu-
ation of service provisioning based on automated SLA management on SOI.

It developed a SLA management framework, which allows the con guration of
multi-layer service and automation in an arbitrary service-oriented infrastructure.
Besides the scienti c values, it implemented a management suite for automated e-
contracting and post-sales.
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BEinGRID. BEinGRID [BEinGRID, 2011] is a research project providing the in-
frastructure to support pilot implementations of Grid technologies in actual business
scenarios.

In BEinGRID, twenty ve business experiments were carried out, each of which
focused on a real business problem and the corresponding solution. To extract best
practice from the experimental implementations, technical and business consultants
worked on analysis of generic components and development of a business plan.
Various technologies were evaluated, including cost reduction, enhanced processing
power, employing a new business model, running applications such as Software-as-
a-Service, etc. Although the BEinGRID project has been completed, it has produced
for cloud computing much information regarding requirement knowledge, business
drivers, technological solutions and hints for migration potential.

1.5 Cloud challenges

Even though some of the essential characteristics of cloud computing have been
realized through commercial and academic efforts, not all capabilities are ful lled to
the necessary extent. Several challenges can be identi ed as follows

1.5.1 MapReduce programming model

Web servers, Web portals, identity management servers, load balancers and appli-
cation servers all bring their speci c functions to the party for a cloud application.
In order to coordinate and use them harmoniously, middleware continues to play a
key role in cloud computing. Generally speaking, cloud middleware is the software
used to integrate services, applications, and content available on the same or differ-
ent layers, by which services and other software components can be reused through
Internet.

Virtualization is one of the key technologies that can merge different infrastruc-
tures, so the management of virtual machines needs to be further developed. Since
there is a lot of mature middleware used in grid computing, how can it be combined
with cloud middleware? Moreover, a natural evolution from grid to cloud is impor-
tant, because effort and time can be saved by technology reuse.

As the migration to cloud is inevitable, programming and accessing cloud plat-
forms should perform seamlessly and ef ciently. In the future, computational plat-
forms will have a huge number of processing nodes, so traditional parallelization
models such as batch processing and message passing models are not scalable
enough to deal with large scale distributed computing.
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1.5.2 Data management

Data storage in the new cloud platform has changed. Replication and distribu-
tion are two of the main characteristics of data stored in a cloud. Data is automati-
cally replicated without the interference of users. Data availability and durability are
achieved through replication. Large cloud providers may have datacenters spread
across the world.

Data stored in a cloud—replicated and distributed—is considered to be unsuitable
for transactional data management applications [Abadi, 2009]. In traditional data
management systems, a transaction should support ACID, which means all compu-
tations contained in a transaction should behave with Atomicity, Consistency, Isola-
tion and Durability. Such a guarantee is important for write-intensive applications.
However, the ACID guarantee is dif cult to achieve on replicated and distributed
data storage. Among full-ful lled database products, shared-nothing architecture is
not commonly used for transactional data management. Realizing a transaction on
a shared-nothing architecture involves complex distributed locking, which is non-
trivial work. The advantage of scalability with shared-nothing architecture is not an
urgent need for transactional data management.

Analytical data management applications are commonly used in business planning
problem solving, and decision support. Data involved in analytical data management
is often historical data. Historical data is usually large in size, and is read-mostly (or
read-only), and occasionally batch updated. Analytical data management applica-
tions can bene t from cloud data storage. Analytical data management applications
are argued to be well-suited to run in a Cloud environment [Abadi, 2009], since an-
alytical data management matches well with shared-nothing architecture, and ACID
guarantees are not needed for it.

1.5.3 Resource scheduling

Resource management [Magoulès et al., 2008] is the rst issue raised over cloud
computing platforms. From the provider’s point of view, large scale virtual ma-
chines need to be allocated to thousands of distributed users, dynamically, fairly, and
most importantly, pro tably. It’s very challenging considering that resource provi-
sioning mechanisms in existing systems such as grids mainly focus on application
performance. From the consumer’s aspect, users are economy-driven entities when
they make the decision to use cloud services [Buyya et al., 2009c]. For adequate
resources, one user will compare the price among different providers. For a scarce
resource, users themselves becomes competitors who will impact the future price
directly, or indirectly. Therefore, the future resource provisioning will become a
multi-objective and multi-criteria problem.

For practical reasons, resource provisioning needs reliable and ef cient support
for negotiation, monitoring, metering, and feedback. The Service Level Agreement
(SLA) is a common tool used to de ne contracts and measure ful llments in busi-
ness scenarios. It describes a set of non-functional requirements of the service the
customer is buying, and contains penalties when the requirements are not met. There-
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fore, formal guidelines for contract description have to be standardized.
Besides the technical strengths of cloud computing, users decide to adopt clouds

for the economic reasons, so the business model of cloud computing should be more
exible, offering clients scalable price options. For example, Amazon customers

can choose purchasing models among on-demand, reserved, spot, and even free tier
according to their own preferences. With more and more cloud solutions emerg-
ing, business models must be reformed to maintain customer loyalty or attract new
attention. In addition, new economic models that support the trading, negotiation,
provisioning and allocation based on consumer preference should be developed.

1.6 Concluding remarks

In this chapter, the concept of cloud computing is rst introduced. Although there
is vast disagreement over what cloud computing is, we tried to re ne some repre-
sentatives and give an unbiased and general de nition. That de nition is not just
an overall concept, but describes system architecture, deployment model and essen-
tial features. Cloud computing is still an evolving paradigm, and it integrates many
existing technologies. A brief evolution history can help us clarify the conditions,
opportunities and challenges existing in cloud development. These de nitions, at-
tributes, and characteristics will evolve and change over time.

Functionally speaking, cloud computing is a service provision model, where soft-
ware, platform, infrastructure, data, and hardware can be directly delivered as a ser-
vice to end customers. The service characteristics are presented from technical, qual-
itatives and economic points of view.

Current efforts are the foundation for future research and development. After
analyzing existing commercial products and research projects, several challenges
in terms of middleware, programming model, resource management and business
model are highlighted. These gaps in cloud computing inspire our interest in our
future research. In the following chapters, the problem of resource management will
be solved in microscopic and macroscopic fashions. In particular, issues such as
resource allocation and job scheduling will be studied.





Chapter 2

Resource scheduling for cloud
computing

2.1 Introduction

This chapter outlines the problems arising from resource scheduling in cloud com-
puting. Related theories including former expressions of problems, algorithms, com-
plexity and schematic methods are brie y introduced. Then cloud scheduling hierar-
chy is presented, and scheduling problems split into user-level and system-level. The
former focuses on the issue of resource provision between providers and customers,
which is solved by economic models. The latter refers to meta-task execution, a sub-
optimal solution of which is given by heuristics to speed up the process of nding a
good enough answer. Moreover, real-time scheduling attracts our attention. Differ-
ent from economic and heuristic strategies, priority scheduling algorithms and their
implementation are discussed at the end of this chapter.

2.2 Cloud service scheduling hierarchy

We specify scheduling problems in cloud environments. As a key characteristic
of resource management, service scheduling makes cloud computing different from
other computing paradigms. The centralized scheduler in a cluster system aims at
enhancing the overall system performance, while the distributed scheduler in a grid
system aims at enhancing the performance of speci c end-users. Compared with
these, scheduling in cloud computing is much more complicated. On the one hand,
a centralized scheduler is necessary, because every cloud provider that promises to
provide services to users without reference to the hosted infrastructure has an indi-
vidual datacenter. On the other hand, a distributed scheduler is also indispensable,
because commercial property determines that cloud computing should deal with the
QoS requirements of customers distributed worldwide. An important issue of this
chapter is to decompose scheduling problems related to cloud computing. Since
cloud service is actually a virtual product on a supply chain, the service scheduling
can be classi ed into two basic catagories: user-level and system-level. The hierar-
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FIGURE 2.1: Scheduling hierarchy.

chy is shown in Figure 2.1. The user-level scheduling deals with the problems raised
by service provision between providers and customers. It mainly refers to economic
concerns such as equilibrium of supply and demand, competition among consumers
and cost minimization under elastic consumer preference. The system-level schedul-
ing handles resource management within a datacenter. From the point of view of
customers, a datacenter is an integration system, which provides uniform services.
Actually, the datacenter consists of many physical machines, homogeneous or het-
erogeneous. After receiving numerous tasks from different users, assigning tasks to
physical machines signi cantly impacts the performance of the datacenter. Besides
improving the system utilization, some speci c requirements should be considered,
such as the real-time satisfaction, resource sharing, fault tolerance, etc.
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2.3 Economic models for resource-allocation scheduling

In the past three years, the explosion of supply-side cloud service provision has
accelerated, with cloud solutions becoming mainstream productions of IT industry.
At the same time, these cloud services gradually mature to become more appropriate
and attractive to all types of enterprises. The growth of both sides of supply and
demand makes the scheduling problems more complex, sophisticated, and even vital
in a cloud environment. A bad scheduling scheme not only undermines CPU uti-
lization, turnaround time and cumulative throughput, but may also result in terrible
consequences, for example providers losing money and even going out of business.

Economic models are more suitable for cloud-based scheduling than traditional
multiprocessor models, especially for regulating the supply and demand of cloud
resources. In economics, market-based and auction-based schedulers handle two
main interests. Market-based schedulers are applied when a large number of naive
users can not directly control service price in commodity trade. Mainstream cloud
providers apply market-based pricing schemes in reality. The concrete schemes vary
from provider to provider. As the most successful IaaS provider, Amazon EC2 sup-
ports commodity and posted pricing models for the convenience of users. Another
alternative is the auction-based scheduler, which is adapted to situations where a
small number of strategic users seeking to attain a speci c service compete with
each other. In auctions, users are able to commit the auction price. Amazon spot
instance is an example of auction-based model. Instance price adjusts from time to
time, depending on the supply and demand. As a result, users should estimate the
future price and make their proposal in an auction before placing a spot instance
request.

2.3.1 Market strategies

In cloud service provision, both service providers and users express their require-
ments through SLAs contracts. Providers need mechanisms that support price spec-
i cation and increase system utilization, while consumers need schemes that guar-
antee their objectives are reached. A market-based scheduler aims at regulating the
supply and demand for resources. To be speci c, the market strategies emphasize
the schemes for establishing a service price depending on their customers’ require-
ments. In previous literature, a broker behaving on behalf of one end-user interacts
with service providers to determine his own price that keeps supply and demand in
equilibrium [Buyya et al., 2002].

2.3.1.1 Strategy types

Commodity model. As a common model in our daily life, service providers spec-
ify their service price and charge users according to the amount of resource they
consume. Any user is free to choose his own provider, but has no right to change
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the service price directly. The amount of their purchase can cause the price to derive
from supply and demand.

The process of scheduling is executed by brokers. On behalf of the users, each
broker identi es several providers to inquire about the prices, and then selects one
provider which can meet its objective. The consumption of service is recorded and
payment is made as agreed.

Posted price model. The posted price strategy makes some special offers to in-
crease the market share or to motivate customers to use the service during the off-
peak period. The posted price, as a kind of advertisement, has time or usage limita-
tions that are not suitable for all users. Therefore, the scheduling process should be
modi ed in this strategy.

Service providers give the regular price, the cheap offers and the associated con-
ditions of usage. Brokers observe the posted price, and compare whether it can
meet the requirement of users. If not, brokers apply commodity strategy as usual.
Otherwise, brokers only inquire of the provider for availability of posted services,
supplementing extra regular service when associated conditions are not satis ed.

Bargaining model. In bargaining strategy, the price is not given by the provider
unilaterally, but by both sides of the transaction through bargaining. A prerequisite
for bargaining is that the objective functions for providers and brokers must have an
intersection, so that they can negotiate with each other as long as their objectives
are both met. In this scenario, a broker does not compare all the prices for the same
service, but connects with one of the providers directly. The price offered by the
provider might be higher than customer expectation, so the broker starts with a very
low price, which has the upside potential. The bargaining ends when a mutually
agreeable price is reached or when one side is not willing to negotiate any further. In
the latter case, the broker will connect with other providers and then start bargaining
again.

Bargaining strategy has an obvious shortcoming, that is, the overhead on commu-
nication is very high. The time delay might lead to lower utilization of resources for
the provider or shorten deadline of service for the customers. In reality, the number
of negotiations can not be in nite, and the bargaining time is always limited.

2.3.1.2 Principles for strategy design

Several market principles should be considered in the process of determining the
service price [Sun et al., 2009].

Equilibrium price. Equilibrium price refers to a price under which the amount of
services bought by buyers is equal to the amount of services produced by sellers.
This price tends to be stable unless demand or supply change.
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Pareto ef ciency. Pareto ef ciency describes a situation where no agent can get a
better allocation than the initial one without reducing other individual allocations. In
other words, resources can not be reallocated in a way that makes everyone better
off.

Individual rationality. Individual rationality can make prices uctuate around the
equilibrium price, which is determined by the process of supply and demand. A
higher price provides incentive to produce more resource, so the amount of scarce
resource can gradually reach saturation then surplus, and vice-versa. Individual ra-
tionality can adjust prices to reach equilibrium instantaneously.

Stability. Stability examines whether a scheduling mechanism can be manipulated.
Individual agents may not reveal private information truthfully. A stable mechanism
allows agents to obtain the best allocation if they submit their truthful information.

Communication ef ciency. Communication ef ciency evaluates the communica-
tion overhead to capture a desirable global solution. Message passing adds commu-
nication overhead to transactions, so additional time is spent on allocation, rather
than on computation. A good scheduling mechanism nds a near-optimum solution
ef ciently.

2.3.2 Auction strategies

Unlike in market-based models, an auction-based scheduler is a rule maker, rather
than a price maker. The rules include how the users bid for services, how the
sale price is determined, who the winning bidder is, how the resource is allocated,
whether there are limits on time or proposal price, etc.

In auction-based schedulers, price is decided according to the given rules, which
bene ts consumers by expressing their real requirement strategically, rather than
waiting for price adjustment in a passive manner. Auction-based schedulers are dis-
tinguished from each other by several characteristics.

2.3.2.1 Strategy types

Number of participants. According to different numbers of bidders, auctions are
classi ed into the demand auction, supply auction and double auction. The English
auction is an example of demand auction, in which n buyers bid for one service. This
type of auction is the most common form of auction in use today. The Dutch auction
focuses on the demand of suppliers, where m sellers offer the same service for one
buyer.

Double auction is needed on the condition that the number of buyers and sellers is
more than one. In a double auction, sellers and buyers both offer bids. The amount
of trade is decided by the quantity at which the marginal buy bid is higher than
the marginal sell bid. With the growing number of participants, the double auction
converges to the market equilibrium.
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Information transparency. Participants in an auction may or may not know the
actions of other participants. Both English and Dutch auctions are open auctions, that
is, the participants repeatedly bid for the service with the complete information about
previous bids of other bidders. Apart from these, there is another type of auction, in
which participants post sealed bids and the bidder with the highest bid wins. In a
closed auction, bidders can only submit one bid each and no one knows the other
bids. Consequently, blind bidders cannot adjust their bids accordingly.

Closed auction is commonly used for modeling resource provision in multi-agent
systems, considering the simplicity and effectiveness of the sealed bids.

Combinatorial auction. A combinatorial auction is a type of smart market in
which participants can place bids on combinations of items, rather than just individ-
ual items. Combinatorial auction is appropriate for computational resource auction,
where a common procedure accepts bids for a package of items such as CPU cycles,
memory, storage, and bandwidth.

Combinatorial auctions are processed by bidders repeatedly modifying their pro-
posals until no one increases their bid any more. In each round, the auctioneer pub-
lishes a tentative outcome to help bidders decide whether to increase their bids or not.
The tentative outcome is the one that can bring auctioneer the best revenue given the
bids. However, nding an allocation of items to maximize the auctioneer’s revenue is
NP-complete. A challenge of combinatorial auctions comes from how to ef ciently
determine the allocation once the bids have been submitted to the auctioneer.

Proportion shared auction. In proportion shared auctions, no winner exists, but
all bidders share the whole resource with a percentage based on their bids. This
type of auction guarantees a maximized utility and ensures fairness among users in
resource allocation, which suits limited resource such as time slot, power, and spec-
trum bandwidth [Kwok et al., 2005]. Shares represent relative resource rights that
depend on the total number of shares contending for a resource. Client allocations
degrade gracefully in overload situations, and clients proportionally bene t from ex-
tra resources when some allocations are underutilized.

2.3.2.2 Principles for strategy design

Game theoretical equilibrium. The auction models applied in cloud service and
other computational resource provisioning are listed above, but are not limited to
these primary types. Generally, an auction-based scheduler emphasizes the equilib-
rium among users rather than the supply-demand balance between provider and user.
The effectiveness of an auction can be analyzed with the help of game theory.

Game theory studies multi-person decision making problems. Any player involved
in a game makes the best decision, taking into account the decisions of others. A
game theoretical equilibrium is a solution in which no player gains by only changing
his own strategy unilaterally. However, this equilibrium does not necessarily mean
the best cumulative payoff for all players.
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Incentive compatibility. In any auction, participants might hide their true prefer-
ences. Incentive compatible auction is one in which participants have incentive to
reveal their real private information. A bidder can maximize his payoff only if the
information is submitted truthfully.

One method to realize incentive compatibility is designing a reasonable price paid
by an auction winner. A good example of incentive compatible auction is the Vickery
auction. In this sealed price auction, the highest bidder wins, but pays the second
highest bid rather than his own. Under this charging rule, bidding lower or higher
than one’s true valuation will never increase the best possible outcome.

2.3.3 Economic schedulers

Economic schedulers have been applied to solve resource management in various
computing paradigms, such as cluster, distributed databases, grids, parallel systems,
Peer-to-Peer, and cloud computing [Buyya et al., 2009c]. Existing middleware ap-
plying economic schedulers, not limited to cloud platforms, is introduced. By doing
this, we can examine the applicability and suitability of these economic schedulers
for supporting cloud resource allocation in practice. This, in turn, helps us identify
possible strengths of the middleware that may be leveraged for cloud environment.

Cluster-on-demand. Cluster-on-demand [Cluster-On-Demand, 2011] is a service-
oriented architecture for networked utility computing. It creates independent virtual
clusters for different groups. These virtual clusters are assigned and managed by a
cluster broker, supporting a tendering and contract-net economic model. The user
submits its requirements to all cluster brokers. Every broker proposes a speci c con-
tract with the estimated execution time and cost. If more than one broker proposes
contracts, users then select one as the resource provider. Earning is afforded by users
to cluster broker as the cost for adhering to the conditions of the contract.

Mosix. Mosix [Mosix, 2011] is a distributed operating system for high perfor-
mance cluster computing that employs an opportunity cost approach to minimize
the overall execution cost of the cluster. It applies a commodity model to compute a
single marginal cost based on the processor and memory usages of the process. The
cluster node with the minimal value of marginal cost is then assigned the process.

Stanford Peers. Stanford Peers [Stanford University, 2011] is a peer-to-peer data
trading framework, in which both auction and bartering models are applied. A local
site wishing to replicate its collection holds an auction to solicit bids from remote
sites by rst announcing its request for storage space. Each interested remote site
then returns a bid, and the site with the lowest bid for maximum bene t is selected
by the local site. Besides that, a bartering system supports a cooperative trading envi-
ronment for producer and consumer participants, so that sites exchange free storage
spaces to bene t both themselves and others. Each site minimizes the cost of trading,
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which is the amount of disk storage space that it has to provide to the remote site for
the requested data exchange.

D’Agents. D’Agents [D’Agents, 2011] is a mobile-agent system for distributed
computing. It implements proportion shared auctions where agents compete for
shared resources. If there is more than one bidder, resources are allocated proportion-
ally. Costs are de ned as rates, such as credits per minute, to re ect the maximum
amount that a user wants to pay for the resource.

Nimrod-G. Nimrod-G [Abramson et al., 2002] is a tool for automated modeling
and execution of parameter sweep applications on grids. Through a broker, the grid
users obtain service prices from different resources. Deadline and budget are the
main constraints speci ed by the user for running his application. The allocation
mechanisms are based on market-based models. Prices of resources thus vary be-
tween different executing applications depending on their QoS constraints. A com-
petitive trading environment exists, because users have to compete with one another
in order to maximize their own personal bene ts.

Faucets. Faucets [Kale et al., 2004] is a resource scheduler of computational grid,
and its objective is supporting ef cient resource allocation for parallel jobs executed
on a changing number of allocated processors during runtime on demand. A ten-
dering model is used in Faucets. A QoS contract is agreed to before job execution,
including payoff at soft deadline, a decreased payoff at hard deadline and a penalty
after hard deadline. Faucets aims to maximize the pro t of resource provider and
resource utilization.

MarketNet. MarketNet [Dailianas et al., 2000] is a market-based protection tech-
nology for distributed information systems. A posted price model is incorporated.
Currency accounts for information usage. The MarketNet system advertises resource
request by offering prices on a bulletin board. Through observing currency ow, po-
tential intrusion attacks into the information systems are controlled, and the damage
is kept to the minimum.

Cloudbus. Cloudbus [Buyya et al., 2009a] is a toolkit providing market-based re-
source management strategies to mediate access to distributed physical and virtual
resources. A third party cloud broker is built on an architecture that provides a gen-
eral framework for any other cloud platforms. A number of economic models with
commodity, tendering, and auction strategies are available for customer-driven ser-
vice management and computational risk management. The broker supports var-
ious application models such as parameter sweep, work ow, parallel, and bag of
tasks. It has plug-in support for integration with other middleware technologies such
a Globus, Aneka, Unicore, etc.
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OpenPEX. OpenPEX [Venugopal et al., 2009] is a resource provisioning system
with an advanced reservation approach for allocating virtual resources. A user can
reserve any number of instances of virtual machines that have to be started at a spe-
ci c time and have to last for a speci c duration. A bilateral negotiation protocol is
incorporated in OpenPEX, allowing users and providers to exchange their offers and
counteroffers, so more sophisticated bartering or double auction models are helpful
to increase the revenue of cloud users.

EERM. EERM [Elmroth and Tordsson, 2005] is a resource broker that enables
bidirectional communication between business and resource layers to promote good
decision-making in resource management. EERM contains sub-components for
performing pricing, accounting, billing, job-scheduling, monitoring and
dispatching. It uses all kinds of market-based mechanisms for allocating network
resources. To increase the revenue, overbooking strategy is implemented to mitigate
the effects of cancellations and no-shows.

A summary of economic schedulers is concluded in Table 2.3.3.

Table 2.1: Economic Schedulers.
Scheduler Economic model Computing paradigm
Cluster-on-demand tendering cluster
Mosix commodity cluster
Stanford Peers auction/bartering peer to peer
D’Agents proportion shared auction mobile-agent
Faucets tendering grid
Nimrod-G commodity/auctions grid
MarketNet posted price distributed information
Cloudbus commodity/tendering/auctions cloud
OpenPEX bartering/double auction cloud
EERM commodity/posted price/. . . cloud

. . . /bartering/tendering

2.4 Heuristic models for task-execution scheduling

In cloud computing, a typical datacenter consists of commodity machines con-
nected by high-speed links. This environment is well suited to the computation of
large, diverse groups of tasks. Tasks belonging to different users are no longer dis-
tinguished one from another. The scheduling problem in such a context is match-
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ing multi tasks to multi machines. As mentioned in the previous section, the opti-
mal matching is an optimization problem, generally with NP-complete complexity.
Heuristics are often applied as a sub-optimal algorithm to obtain relatively good so-
lutions.

This section intensively researches two types of strategies, static and dynamic
heuristics. A static heuristic is suitable for the situation where the complete set of
tasks is known prior to execution, while a dynamic heuristic performs the scheduling
when a task arrives. Before further explanation, several preliminary terms should be
de ned.

• ti: task i

• mj : machine j

• ci: the time when task ti arrives

• aj : the time when machine mj is available

• eij : the execution time for ti is executed on mj

• cij : the time when the execution of ti is nished on mj , cij = aj + eij

• makespan: the maximum value of cij , which means the whole execution
time. The aim of heuristics is to minimize makespan, that is to say, scheduling
should nish execution of a metatask as soon as possible.

2.4.1 Static strategies

Static strategies are performed under two assumptions. The rst is that tasks arrive
simultaneously ci = 0. The second is that machine available time aj is updated after
each task is scheduled.

Opportunistic Load Balancing (OLB). OLB schedules every task, in arbitrary
order, to the next available machine. Its implementation is quite easy, because it
does not need extra calculation. The goal of OLB is simply to keep all the machines
as busy as possible.

Minimum Execution Time (MET). MET schedules every task, in arbitrary order,
to the machine which has the minimum execution time for this task. MET is also
very simple, giving the best machine to each task, but it ignores the availability of
machines. MET jeopardizes the load balance across machines.

Minimum Completion Time (MCT). MCT schedules every task, in arbitrary or-
der, to the machine which has the minimum completion time for this task. However,
in this heuristic, not all tasks can be given the minimum execution time.
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Min-min. Min-min begins with the set T of all unscheduled tasks. Then, the ma-
trix for minimum completion time for each task in set T is calculated. The task
with overall minimum completion time is scheduled to its corresponding machine.
Next, the scheduled task is removed from T . The process repeats until all tasks are
scheduled.

Min-max. Min-max is similar to Min-min heuristic. Min-max also begins with
the set T of all unscheduled tasks, and then calculates the matrix for minimum com-
pletion time for each task in set T . Different from min-min, the task with overall
maximum completion time is selected and scheduled to its corresponding machine.
Next, the scheduled task is removed from T . The process repeats until all tasks are
scheduled.

Genetic Algorithm (GA). GA is a heuristic to search for a near-optimal solution
in large solution spaces [Braun et al., 2001]. The rst step is randomly initializing
a population of chromosomes (possible scheduling) for a given task. Each chro-
mosome has a tness value (makespan) that results from the scheduling of tasks
to machines within that chromosome. After the generation of the initial popula-
tion, all chromosomes in the population are evaluated based on their tness value,
with a smaller makespan being a better mapping. Selection scheme probabilisti-
cally duplicates some chromosomes and deletes others, where better mappings have
a higher probability of being duplicated in the next generation. The population size
is constant in all generations. Next, the crossover operation selects a random pair of
chromosomes and chooses a random point in the rst chromosome. The crossover
exchanges machine assignments between corresponding tasks. A mutation opera-
tion is performed after the crossover. Mutation randomly selects a chromosome,
then randomly selects a task within the chromosome, and randomly reassigns it to a
new machine. After evaluating the new population, another iteration of GA starts,
including selection, crossover, mutation, and evaluation. Only when stopping criteria
are met, will the iteration stop.

Simulated Annealing (SA). SA uses a procedure that probabilistically allows
poorer solutions to be accepted to obtain a better search of the solution space. This
probability is based on a system temperature that decreases for each iteration, which
implies that a poorer solution is not easily accepted. The initial system tempera-
ture is the makespan of the initial scheduling, which is mutated in the same manner
as the GA. The new makespan is evaluated at the end of each iteration. A worse
makespan might be accepted based on a probability, so the SA nds poorer solutions
than min-min and GA.

Tabu. A Tabu search keeps track of the regions of the solution space which have
already been searched so as not to repeat a search near these areas. A scheduling
solution uses the same representation as a chromosome in the GA approach. To
manipulate the current solution and to move through the solution space, a short hop is
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performed. The intuitive purpose of a short hop is to nd the nearest local minimum
solution within the solution space. When the short hop procedure ends, the nal
scheduling from the local solution space search is added to the Tabu list. Next, a new
random scheduling is generated, to perform a long hop to enter a new unsearched
region of the solution space. After each successful long hop, the short hop procedure
is repeated. After the stopping criterion is satis ed, the best scheduling from the
Tabu list is the nal answer.

A∗. A∗ is a tree-based search heuristic beginning at a root node that is a null
solution. As the tree grows, nodes represent partial scheduling (a subset of tasks is
assigned to machines), and leaves represent nal scheduling (all tasks are assigned
to machines). The partial solution of a child node has one more task scheduled than
the parent node. Each parent node can be replaced by its children. To keep
execution time of the heuristic tractable, there is a pruning process to limit the
maximum number of active nodes in the tree at any one time. If the tree is not
pruned, this method is equivalent to an exhaustive search. This process continues
until a leaf (complete scheduling) is reached.

The listed heuristics above are t for different scheduling scenarios. The variation
of scenarios is caused by the task heterogeneity, machine heterogeneity and machine
inconsistence. The machines are consistent if machine mi executes any task faster
than machine mj , it executes all tasks faster than mj . These heuristics are evaluated
by simulation in an article [Braun et al., 2001]. For consistent machines, GA per-
forms the best, while MET performs the worst. For inconsistent machines, GA and
A∗ give the best solution, and OLB gives the worst. Generally, GA, A∗ and min-min
can be used as a promising heuristic with a short average makespan.

2.4.2 Dynamic strategies

Dynamic heuristics are necessary when a task set or a machine set is not xed. For
example, not all tasks arrive simultaneously, or some machines go of ine at intervals.
The dynamic heuristics can be used in two fashions, on-line mode and batch mode.
In the former mode, a task is scheduled to a machine as soon as it arrives. In the
latter mode, tasks are rst collected into a set that is examined for scheduling at
prescheduled times.

2.4.2.1 On-line mode

In on-line heuristics, each task is scheduled only once; the scheduling result can
not be changed. On-line heuristics are suitable for the cases in which arrival rate is
low [Shoukat et al., 1999].

OLB. The OLB dynamic heuristic assigns a task to the machine that becomes
ready next regardless of the execution time of the task on that machine.
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MET. A MET dynamic heuristic assigns each task to the machine that performs
that task’s computation in the least amount of execution time, regardless of machine
available time.

MCT. The MCT dynamic heuristic assigns each task to the machine, which results
in the task’s earliest completion time. MCT heuristic is used as a benchmark for the
on-line mode [Shoukat et al., 1999].

Switching Algorithm (SA). The SA uses the MCT and MET heuristics in a cyclic
fashion depending on the load distribution across the machines. MET can choose the
best machine for tasks but might assign too many tasks to the same machines, while
MCT can balance the load, but might not assign tasks to machines that have their
minimum executing time. If the tasks are arriving in a random mix, it is possible to
use the MET at the expense of load balance up to a given threshold, and then use the
MCT to smooth the load across the machines.

K-Percent Best (KPB). The KPB heuristic considers only a subset of machines
while scheduling a task. The subset is formed by picking the k best machines based
on the execution times for the task. A good value of k schedules a task to a machine
only within a subset formed from computationally superior machines. The purpose
is to avoid putting the current task onto a machine which might be more suitable for
some yet-to-arrive tasks, so it leads to a shorter makespan as compared to the MCT.

For all the on-line mode heuristics, KPB outperforms others in most scenarios
[Shoukat et al., 1999]. The results of MCT are good, only slightly worse than KPB,
owing to the lack of prediction for task heterogeneity.

2.4.2.2 Batch mode

In batch mode, tasks are scheduled only at some prede ned moments. This en-
ables batch heuristics to determine about the actual execution times of a larger num-
ber of tasks.

Min-min. First Min-min updates the set of arrival tasks and the set of available ma-
chines, calculating the corresponding expected completion time for all ready tasks.
Next, the task with the minimum earliest completion time is scheduled and then
removed from the task set. Machine available time is updated, and the procedure
continues until all tasks are scheduled.

Max-min. The Max-min heuristic differs from the Min-min heuristic where the
task with the maximum earliest completion time is determined and then assigned to
the corresponding machine. The Max-min performs better than the Min-min heuris-
tic, if the number of shorter tasks is larger than that of longer tasks.
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Sufferage. The Sufferage heuristic assigns a machine to a task that would suffer
most if that particular machine were not assigned to it. In every scheduling event, a
sufferage value is calculated, which is the difference between the rst and the
second earliest completion time. For task tk, if the best machine mj with the
earliest completion time is available, tk is assigned to mj . Otherwise, the heuristic
compares the sufferage value of tk and ti, the task already assigned to mj . If the
Sufferage value of tk is bigger, ti is unassigned and added back to the task set. Each
task in the set is considered only once.

Generally, Sufferage gives the smallest makespan among batch mode heuristics
[Shoukat et al., 1999]. The batch mode performs better than the on-line mode with
high task arrival rate.

2.4.3 Heuristic schedulers

One advantage of cloud computing is that tasks which might be dif cult, time
consuming, or expensive for an individual user can be ef ciently accomplished in
a datacenter. Datacenters in clouds support functional separation between the pro-
cessing power and data storage, both of which locate in a large number of remote
devices. Hence, scheduling becomes more complicated and challenging than ever
before. Since a scheduler is only a basic component of the whole infrastructure,
no general scheduler can t for all cloud architectures. In this section, we mainly
discuss schedulers used for data-intensive distributed applications.

2.4.3.1 Hadoop

MapReduce is a popular computation framework for processing large-scaled data
in mainstream public and private clouds, and it is considered an indispensable cor-
nerstone for cloud implementation. Hadoop is the most widespread MapReduce
implementation for educational or production uses. It enables applications to work
with thousands of nodes and petabytes of data.

A multi-node Hadoop cluster contains two layers. The bottom is the Hadoop Dis-
tributed File System (HDFS), which provides data location awareness for effective
scheduling of work. Above the le systems is the MapReduce engine, which in-
cludes one job tracker and several task trackers. Every tracker inhabits an individual
node. Clients submit MapReduce jobs to the job tracker, then the job tracker pushes
work out to available Task Tracker nodes in the cluster [Borthakur, 2007].

Hadoop is designed for large batch jobs. The default scheduler uses an FIFO
heuristic to schedule jobs from a work queue. Alternative job schedulers are the fair
scheduler, the capacity scheduler, and the delay scheduler.

FIFO scheduler. The FIFO scheduler [Borthakur, 2007] applies a rst-in rst-out
heuristic. When a new job is submitted, the scheduler puts it in the queue according
to its arrival time. The earliest job on the waiting list is always executed rst. The
advantages are that the implementation is quite easy and that the overhead is mini-
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mal. However, throughput of FIFO scheduler is low, since tasks with long execution
time can seize the machines.

Fair scheduler. A Fair scheduler [Zaharia et al., 2008] assigns an equal share of
resources to all jobs. When new jobs are submitted, task slots that free up are shared,
so that each job gets roughly the same amount of CPU time. The Fair scheduler
supports job priorities as weights to determine the fraction of total compute time that
each job should be assigned. It also allows a cluster to be shared among a number
of users. Each user is given a separate pool by default, so that everyone is allocated
the same share of the cluster no matter how many jobs are submitted. Within each
pool, fair sharing is used to share capacity between the running jobs. In addition, a
guaranteed minimum share is allowed. When a pool contains jobs, it gets at least its
minimum share, but when the pool does not need its full guaranteed share, the excess
is split among other running jobs.

Capacity scheduler. A Capacity scheduler [Zaharia et al., 2009] allocates cluster
capacity to multiple queues, each of which contains a fraction of capacity. Each
job is submitted to a queue; all jobs submitted to the same queue will have access
to the capacity allocated to the queue. Queues enforce limits on the percentage of
resources allocated to a user at any given time, so no user monopolizes the resource.
Queues optionally support job priorities. Within a queue, jobs with high priority will
have access to resources preferentially. However, once a job is running, it will not be
preempted for a higher priority job.

Delay scheduler. A Delay scheduler [Zaharia et al., 2010] addresses con ict be-
tween scheduling fairness and data locality. It temporarily relaxes fairness to improve
locality by asking jobs to wait for a scheduling opportunity on a node with local data.
When the job that should be scheduled next according to fairness cannot launch a lo-
cal task, it waits for a short length of time, letting other jobs launch tasks instead.
However, if a job has been skipped long enough, it is allowed to launch non-local
tasks to avoid starvation. A Delay scheduler is effective if most of the tasks are short
compared to jobs, and if there are many slots per node.

2.4.3.2 Dryad

The Dryad [Dryad, 2011] is a distributed execution engine for general data parallel
applications, and it seems to be Microsoft’s programming framework, providing sim-
ilar functionality to Hadoop. Dryad applies directed acyclic graph (DAG) to model
applications.

Quincy. The Quincy [Isard et al., 2009] scheduler tackles the con ict between lo-
cality and scheduling in Dryad framework. It represents the scheduling problem
as an optimization problem. Min-cost ow makes a scheduling decision, matching
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tasks and nodes. The basic idea is to kill some of the running tasks and then to launch
new tasks to place the cluster in the con guration returned by the ow solver.

2.4.3.3 Others

To sum up the heuristic schedulers for cloud computing, scheduling in clouds is
all about resource allocation, rather than job delegation in HPC or grid computing.
However, the traditional meta-schedulers can be evolved to adapt cloud architectures
and implementations, considering the development of virtualization technologies.
Next, we take several representatives for example as follows

Oracle Grid Engine. The Oracle Grid Engine [Oracle, 2011] is an open source
batch-queuing system. It is responsible for scheduling remote execution of large
numbers of standalone, parallel or interactive user jobs and managing the allocation
of distributed resources. It is now integrated by Hadoop and Amazon EC2, and
works as a virtual machine scheduler for Nimbus in a cloud computing environment.

Maui Cluster Scheduler. The Maui Cluster Scheduler [Maui, 2011] is an open
source job scheduler for clusters and supercomputers, which is capable of support-
ing an array of scheduling policies, dynamic priorities, extensive reservations, and
fair share capabilities. It has now developed new features including virtual private
clusters, basic trigger support, graphical administration tools, and a Web-based user
portal in Moab.

Condor. Condor [Thain et al., 2005] is an open source high-throughput computing
software framework used to manage workload on a dedicated cluster of computers.
Condor-G has developed, provisioning virtual machines on EC2 through the VM
Universe. It also supports launching Hadoop MapReduce jobs in Condor’s parallel
universe.

gLite. gLite [Ragusa et al., 2009] is a middleware stack for grid computing initially
used in scienti c experiments. It provides a framework for building grid applications,
tapping into the power of distributed computing and storage resources across the In-
ternet, which can be compared to corresponding cloud services such as Amazon EC2
and S3. Since technologies such as REST, HTTP, hardware virtualization and Bit-
Torrent displaced existing accesses to grid resources, gLite federates both resources
from academic organizations as well as commercial providers to remain pervasive
and cost effective.
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2.5 Real-time scheduling in cloud computing

There are emerging classes of applications that can bene t from increasing the tim-
ing guarantee of cloud services. These mission critical applications typically have
deadline requirements, and any delay is considered a failure for the whole deploy-
ment. For instance, traf c control centers periodically collect data on the state of
roads using sensor devices. Database updates recent information before next data
reports are submitted. If anyone consults the control center about traf c problems,
a real-time decision should be made to help operators choose appropriate control
actions. Besides, current service level agreements can not provide cloud users with
real-time control over the timing behavior of the applications, so more exible, trans-
parent and trustworthy service agreements between cloud providers and users are
needed in future.

Given the above analysis, the ability to satisfy timing constraints of such real-
time applications plays a signi cant role in the cloud environment. However, the
existing cloud schedulers are not perfectly suitable for real-time tasks, because they
lack strict requirement of hard deadlines. A real-time scheduler must ensure that
processes meet deadlines, regardless of system load or makespan.

Priority is applied to the scheduling of these periodic tasks with deadlines. Every
task in priority scheduling is given a priority through some policy, so that scheduler
assigns tasks to resources according to priorities. Based on the policy for assigning
priority, real-time scheduling is classi ed into two types: xed priority strategy and
dynamic priority strategy.

2.5.1 Fixed priority strategies

A real-time task τi contains a series of instances. Fixed priority scheduling is
when all instances of one task have the same priority. The most in uential algorithm
for priority assignment is the Rate Monotonic (RM) algorithm proposed by Liu [Liu
and Layland, 1973]. In the RM algorithm, the priority of one task depends on its
release rate. The higher the rate is, the higher the priority. Period Ti is the length of
time between two successive instances, and computation time Ci is the time spent on
task execution. Since the release rate is inverse to its period, Ti is usually the direct
criterion to determine task priority.

A schedulability test is to determine whether temporal constraints of tasks can be
met at runtime. Exact tests are ideal but intractable, because the complexity of exact
tests is NP-hard for non-trivial computational models [Sha et al., 2004]. Suf cient
tests are less complex but more pessimistic. Schedulability analysis is suitable for
the systems whose tasks are known a priori.

Suf cient tests can be executed by checking whether a suf cient utilization-based
condition is met. For example, Liu [Liu and Layland, 1973] proved that a set of n
periodic tasks using RM algorithm is schedulable if

∑ Ci

Ti
≤ n(21/n−1). The bound

is tight, in the sense that some task sets are unschedulable with the utilization that is
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arbitrarily higher than n(21/n − 1). Actually, many task sets with utilization higher
than this bound can be scheduled. Lehoczky [Lehoczky et al., 1989] proved that the
average schedulable utilization, for large randomly chosen task sets, reaches 0.88,
much higher than Liu’s result of 0.69. The desire for a more precise and tractable
schedulability test pushes researchers to search for high utilization bounds under
special assumptions, such as appropriate choice of task periods.

Exact testing permits higher utilization levels to be guaranteed. One approach to
solving this problem is determining the worst-case response time of a task Ri. Once
the longest time between arrival of a task and its subsequent instantiations is known,
the test can be checked by comparing the deadline Di and the worst-case response
time Ri. The complexity of the test comes from the Ri calculation by recursive

equations. Ri = Ci +
∑i−1

j=1

⌈
Ri

Tj

⌉
Cj . This equation can be solved iteratively,

because only a subset of the task release times in the interval between zero and
Ti needs to be examined, observed by Harter, Joseph and Audsley independently
[Harter and Paul, 1987, Joseph and Pandya, 1986,Audsley et al., 1993].

One relaxation of Liu’s model is that task deadline does not exactly equal its pe-
riod. Therefore, a RM algorithm is not optimal for priority assignment. Instead,
Leung proposed the Deadline Monotonic (DM) algorithm as the optimal policy
for such systems, assigning higher priorities to tasks with shorter deadlines than
those with longer deadlines [Leung and Whitehead, 1982]. Under this assumption,
Lehoczky [Lehoczky, 1990] proposed two suf cient schedulability tests by restrict-
ing Di = kTi, where k is a constant across all tasks. Tindell [Thuel and Lehoczky,
1994] extended the exact test for tasks with arbitrary deadlines.

A further relaxation is permitting tasks to have unequal offsets. Since the worst-
case situation occurs when all tasks share a common release time, utilization bound
for suf cient test and response time for exact test in Liu’s model might be too pes-
simistic. Analyzing general offsets ef ciently still remains a problem. Under the as-
sumption of speci ed offsets, RM and DM are no longer optimal, but Audsley [Aud-
sley et al., 1995] showed the optimal priority assignment can be achieved by exam-
ining a polynomial number of priority ordering over the task set.

Liu’s model and its further extensions are suitable for single processor scheduling.
In distributed systems, multiple processors can be scheduled in two approaches, par-
titioned and global. The former is when each task is assigned to one processor, which
executes all incantations of the task. The latter is when tasks compete for the use of
all processors. Partition and global schemes are incomparable in effectiveness, since
the required number of processors is not the same [Sha et al., 2004].

For partitioned policy, the rst challenge is to nd the optimal partitioning of
tasks among processors, which is a NP-complete problem. Therefore, heuristics are
used to nd good sub-optimal static allocations. The main advantage of heuristic
approaches is that they are much faster than optimal algorithms, while they deliver
fairly good allocations. Dhall [Dhall and Liu, 1978] proved that RM Next-Fit guar-
antees schedulability of task sets with utilization bound of m/(1 + 21/3). Oh [Oh
and Bakker, 1998] showed that RM First-Fit schedules periodic tasks with total uti-
lization bounded by m(21/2 − 1). Later, Lopez [López et al., 2004] lifted a tight
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bound of (m+1)(21/(m+1)−1) for RM First-Fit scheduling. Andersson [Andersson
et al., 2001] showed that system utilization can not be higher than (m+1)/2 for any
combination of processor partitioning and any priority assignment.

For global policy, the greatest concern is to nd an upper bound λ on the individual
utilization for RM global scheduling. The small λ presents high system utilization
bound. Andersson [Andersson et al., 2001] proved that system utilization bound
is m2/(3m − 1) with λ = m/(3m − 2). Baruah [Baruah and Goossens, 2003]
showed that for λ = 1/3 system utilization of at least m/3 can be guaranteed. With
arbitrary large λ, Barker [Baker, 2005] showed that the system utilization bound is
(m/2)(1− λ) + λ.

2.5.2 Dynamic priority strategies

Dynamic priority assignment is more ef cient than the xed manner, since it can
fully utilize the processor for the most pressing tasks. The priorities change with
time, varying from one request to another or even during the same request. The
most used algorithms are Earliest Deadline First (EDF) and Least Laxity First (LLF)
[Uthaisombut, 2008]. EDF assigns priorities to tasks inversely proportional to the
absolute deadlines of the active jobs. Liu [Liu and Layland, 1973] proved that n
periodic tasks can be scheduled using the EDF algorithm if and only if

∑ Ci

TI
≤ 1.

LLF assigns the processor to the active task with the smallest laxity. LLF has a large
number of context switches due to laxity changes at runtime. Even though both EDF
and LLF are optimal algorithms, EDF is more popular in real-time research because
it has a lower overhead than LLF.

Under EDF, schedulability tests can be done by processor demand analysis. Pro-
cessor demand in an interval [t1, t2] is the amount of processing time g(t1, t2) re-
quested by those tasks that must be completed in [t1, t2]. The tasks can be sched-
uled if and only if any interval of time the total processor demands g(t1, t2) is less
than the available time [t1, t2]. Baruah [Braun et al., 2001] proved that a set of
periodic tasks with the same offset can be scheduled if and only if U < 1 and

∀L > 0,
∑n

i=1

⌊
L+Ti−Di

Ti

⌋
Ci ≤ L. The suf cient test of EDF is of O(n) com-

plexity if deadline equals period. Otherwise, an exact test can be nished in pseudo-
polynomial time complexity, when deadline is no longer than period [Sha et al.,
2004].

The research on real-time scheduling is not limited to the issues discussed above.
For practicable usage, assumptions can be released, so that researches are extended
in a number of ways.

• Not all the tasks have periodic release. An aperiodic server is introduced to
permit aperiodic tasks to be accommodated in the periodic models.

• Tasks have resource or precedence relationships. Tasks can be linked by a lin-
ear precedence constraint, and communicating via shared resources is allowed
to realize task interaction.
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• Computation time of tasks varies widely. Some reduced-but-acceptable level
of service should be provided when workload exceeds normal expectations.

• Soft real-time applications exist. Control mechanisms can optimize the per-
formance of the systems, and analytic methods are developed to predict the
system performance.

2.5.3 Real-time schedulers

A scheduler is called dynamic if it makes scheduling decisions at runtime, select-
ing one out of the current set of ready tasks. A scheduler is called static (pre-runtime)
if it makes scheduling decisions at compile time. A static scheduler generates a dis-
patching table for the runtime dispatcher off-line.

Generally, real-time schedulers are embedded in corresponding kernels with re-
spect to their scheduling approaches. The MARS kernel [Hyman et al., 1991] targets
hard real-time systems for peak load conditions. A xed scheduling approach is
adopted. Schedule is completely calculated of ine and is given to the nodes as part
of system initialization. All inter-process communications and resource requests are
included in the schedule. Nodes may change schedules simultaneously to another
pre-calculated schedule.

An arts kernel [Tokuda and Mercer, 1989] aims at providing a predictable, analyz-
able, and reliable distributed computing system. It uses the RM/EDF/LLF algorithms
to analyze and guarantee hard real-time processes of ine. Non-periodic hard real-
time processes are scheduled using execution time reserved by a deferrable server.
All other processes are scheduled dynamically using a value-function scheme.

With the augmentation of real-time services, real-time kernels are widely required
in cloud computing. However, many kernels are not very capable of satisfying real-
time systems requirements, particularly in the multicore context. One solution is ap-
plying loadable real-time schedulers as plug-ins into operation systems regardless of
kernel con gurations. As a result, variant scheduling algorithms are easily installed.
A good example is RESCH for the Linux kernel, which implements four scheduler
plugins with partitioned, semi-partitioned, and global scheduling algorithms [Kato
et al., 2009].

When schedulers step into the cloud environment, virtualization is an especially
powerful tool. Virtual machines can schedule real-time applications [Buyya et al.,
2009a], because they allow for a platform-independent software development and
provide isolation among applications. For example, Xen provides the simplest EDF
scheduler to enforce temporal isolation among the different VMs. OpenVMS, a
multi-user multiprocessing virtual memory-based operating system, is also designed
for real-time applications.
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2.6 Concluding remarks

In this chapter, we rst reviewed the scheduling problems in a general fashion.
Then we described the cloud service scheduling hierarchy. The upper layer deals
with scheduling problems raised by economic concerns, such as equilibrium between
service providers and consumers, the competition among consumers who need the
same service, etc. Market-based and auction models are effective tools, both of
which are explained with details and design principles. After that, several types of
middleware leveraging these economic models for cloud environment are presented.
The lower layer refers to metadata scheduling within the datacenter. Tasks belonging
to different users are no longer distinguished one from another. The scheduling prob-
lem in such a context is matching multi tasks to multi machines, which can be solved
by heuristics. Heuristics are classi ed into two types. A static heuristic is suitable
for the situation where the complete set of tasks is known prior to execution, while
a dynamic heuristic performs the scheduling when the task arrives. In cloud-related
frameworks, such as Hadoop and Dryad, batch-mode dynamic heuristics are most
used, and more practical schedulers are developed for special usage. Other meta-
schedulers in HPC or grid computing have evolved to adapt cloud architectures and
implementations.

For commercial purposes, cloud services heavily emphasize time guarantee. The
ability to satisfy timing constraints of such real-time applications plays a signi cant
role in the cloud environment. We then examined the particular scheduling algo-
rithms for real-time tasks, that is, priority-based strategies. These strategies, already
used in traditional real-time kernels, are not really capable of satisfying real-time
systems requirements. New technologies, such as loadable real-time plug-ins and
virtual machines, are introduced as promising solutions for real-time cloud sched-
ulers.





Chapter 3

Game theoretical allocation in a
cloud datacenter

3.1 Introduction

Cloud computing can cut IT costs and at the same time herald in a new era of
agility in IT operations. A fundamental element is the concept of a datacenter, in
which IT solutions are considered as services and are as easily purchased as other
consumption models. This facility is caused by the development of virtualization
technology, which hides heterogeneous con guration details from customers. There-
fore, resource provision takes on market dealing behaviors, not just match-making
scheduling between tasks and machines [Armbrust et al., 2009]. The market mecha-
nism is an effective method to control electronic resources, but the existing market-
based models are dedicated either to maximize the revenue of suppliers, or to balance
the supply-demand relationship [Buyya et al., 2002]. In this chapter, we shall focus
on the contest among cloud customers who need the same resource, and make a
reasonable allocation to keep market equilibrium.

Game theory studies multi-person decision making problems. Although there
have been researches on allocation strategies using game theory [Galstyan et al.,
2003], [Bredin et al., 2003], [Maheswaran and Basar, 2003], [Khan and Ahmad,
2006], [An et al., 2007], [Wei et al., 2009], [Fan et al., 2009], [Teng and Magoulès,
2010], no one strategy perfectly suits the new computing service market. In order to
establish an appropriate model for clouds, several important characteristics should be
highlighted. First, cloud users, whose goal is to get better service at a better cost, are
self-interested but rational. Second, these buyers have more than one behavioral con-
straint, so they have to make a trade-off of one constraint for another in management
practice. Third, the pay-as-you-go feature means transactions are never static, but re-
peated gambling processes. Each user can adjust its bid price based on the previous
behaviors. Fourth, cloud customers are anonymous, in different cities worldwide,
so they do not know each other. In other words, there is no common procurement
knowledge in the whole system. Fifth, cloud users having different tasks always
arrive in datacenters without a prior arrangement, in which, the accurate forecast be-
comes extremely challenging in such a complex scenario, so a good allocation model
integrating compromise, competition and prediction should be further generalized
and well evaluated. Given the above challenges, we thereby use game theoretical
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auctions to solve the resource allocation problem in clouds, and propose practicable
algorithms for user bidding and auctioneer pricing. With Bayesian learning predic-
tion, resource allocation can reach Nash equilibrium among non-cooperative users
even though common knowledge is insuf cient and dynamically updated.

The remainder of this chapter is organized as follows. Section two rst gives
a short tutorial on game theory, covering the different classes of games and their
applications, payoff choice and utility function, as well as strategic choice and Nash
equilibrium. Next, a non-cooperative game for resource allocation is built. The
scheduling model includes bid-shared auction, user strategy (bid function), price
forecasting and equilibrium analysis. Based on equilibrium allocation, simulation
algorithms running on the Cloudsim platform are proposed. After that, the Nash
equilibrium and forecasting accuracy are evaluated. We conclude this chapter by
summarizing related work on game theoretical resource allocation and by suggesting
some future research avenues.

3.2 Game theory

Game theory models strategic situations, in which an individual’s payoff depends
on the choices of others. It provides a theoretical basis for the elds of economics,
business, politics, logic, and computer science. It is an effective approach to achieve
equilibrium in multi-agent systems, computational auctions, peer-to-peer systems,
and security and information markets. With the development of the cloud service
market, game theory is useful to address the resource allocation problems in cloud
systems where agents are autonomous and self-interested.

3.2.1 Normal formulation

Game is an interactive environment where the bene t of an individual choice de-
pends on the behaviors of other competitors. A normal game consists of all conceiv-
able strategies of every player and their corresponding payoffs. There are several
important terms used to characterize a normal form of game [Gibbons, 1992].

Player. A player is the game participant. There is a nite set of players P =
{1, 2, · · · ,m}.

Strategy. Strategy is the action taken by one player. Each player k in P
has a particular strategy space containing a nite number of strategies, Sk =
{s1k, s2k, · · · , snk}. Strategy space is S = S1 × S2 × · · · × Sm. The game outcome is
a combination of strategies of m players s = (s1, s2, · · · , sm), si ∈ Si.
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Payoff. Payoff is the utility received by a single player at the outcome of one
game, which determines the player’s preference. For resource allocation, payoff
stands for the amount of resource received, for example, ui(s) represents the payoff
of player i when the output of the game is s, s ∈ S. A payoff function
U = {u1(S), u2(S), · · · , um(S)} is speci ed for each player de ned by the player
set P .

Therefore, the normal form of a game is a structure such as

G =< P, S, U > (3.1)

3.2.2 Payoff choice and utility function

In the cloud computing market, service providers and their customers have their
own preferences. Providers balance the investments on capital, operation, labor, and
device. Customers have different QoS requirements, such as cost, execution time,
access speed, throughput, and stability. All these preferences have an impact on
agents’ choices, thus an integrated indication to guide agents’ behaviors is necessary.

Utility is a measure of relative satisfaction in economics. It is often expressed
as a function to describe the payoff of agents. More speci cally, utility function
combines more than one service requirement and analyzes Pareto ef ciency under
certain assumptions such as service consumption, time spending, and money pos-
session. Therefore, utility is very useful when a cloud agent tries to make a wise
decision. High value of utility stands for great preference of service when the inputs
are the same.

One key property of utility function is constant elasticity of substitution (CES). It
combines two or more types of consumption into an aggregate quantity. The CES
function is

C = [

n∑
i=1

a
1
s
i c

s−1
s

i ]
s

s−1 (3.2)

C is aggregate consumption, ci is individual consumptions, such as energy, labor,
time, capital, etc. The coef cient ai is share parameter, and s is elasticity of substi-
tution. These consumptions are perfect substitutes when s approaches in nity, and
are perfect complements when s approaches zero. The preferences for one factor
over another always change, so the marginal rate of substitution is not constant. For
the sake of simplicity, s equals one in the following analysis. Let r = (s− 1)/s = 0,
we obtain

lnC =
ln
∑n

i=1 (a
1−r
i cri )

r
(3.3)

Apply l’Hopital’s rule,

lim
r→0

lnC =

∑n
i=1 ai ln ci∑n

i=1 ai
(3.4)

If
∑n

i=1 ai = 1, the consumption function has constant returns to scale, which means
that the consumption increased by the same percentage as the rate of growth of each



44 Cloud Computing: Data-Intensive Computing and Scheduling

consumption good. If every ai is increased by 20%, C increases by 20% accord-
ingly. If

∑n
i=1 ai < 1, the returns to scale decrease, on the contrary, returns to scale

increase. We take two QoS requirements, speed and stability, for example. The CES
function is shown in Figure 3.1. The contour plot beneath the surface signi es a

FIGURE 3.1: Constant elasticity of substitution functions.

collection of indifference curves, which can represent observable demand patterns
over the right bundles. Every curve shows different bundles of goods, for which a
consumer has no preference for one bundle over another. One can equivalently refer
to each point on the indifference curve as rendering the same level of utility for the
customer.

In particular, CES function is a general expression of the Cobb Douglas function.
The Cobb Douglas function has been widely used in consumption, production and
other social welfare analysis. It can build a utility function. In a generalized form,
where c1, c2, · · · , cn are the quantities consumed of n goods, the utility function
representing the same preferences is written as:

ũ(c) =

n∏
i=1

cai
i (3.5)

with c = (c1, c2, · · · , cn). Set a =
∑n

i=1 ai, we obtain the function c �→ c
1
a , which

is strictly monotone for c > 0.

u(c) = ũ(c)
1
a (3.6)

represents the same preferences. Setting ρi = ai/a it can be shown that

u(c) =
n∏

i=1

cρi

i ,
n∑

i=1

ρi = 1 (3.7)

The problem of maximum utility is solved by looking at the logarithm of the utility

max
c

n∑
i=1

ρi ln ci (3.8)
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3.2.3 Strategy choice and Nash equilibrium

The Nash equilibrium is a certain combination of strategy choices, under which
no player can bene t by unilaterally changing his strategy while those of the other
players remain unchanged. The Nash equilibrium is based on the assumption that all
players are rational and that their rationality is common knowledge.

A formal de nition of the Nash equilibrium is as follows. Let G =< P, S, U >
be a game and si be a strategy pro le of all players except for player i. After each
player i has chosen their strategies, player i obtains payoff ui(s1, · · · , sn). Note that
the payoff depends on the strategy chosen by player i as well as the strategies chosen
by all the other players. A strategy pro le {s∗1, · · · , s∗n} ∈ S is a Nash equilibrium
if no unilateral deviation in strategy by any single player is pro table for that player,
that is

∀i, si ∈ Si, si �= s∗i : ui(s
∗
i , s

∗
−i) > ui(si, s

∗
−i) (3.9)

Nash equilibrium analyzes a strategy pro le under the assumption of complete infor-
mation. However, if some information is private, and not known to all players, the
players with incomplete information have to evaluate the possible strategy pro les.
In particular, every rational player tries to take an action which maximizes its own
expected payoffs, supposing a particular probability distribution of actions taken by
other competitors. Therefore, the belief about which strategies other players will
choose is crucial. Players can only make the best responses based on a correct be-
lief. Each strategy is the best response to all other strategies in the Bayesian Nash
equilibrium.

In Bayesian games, a type space Ti of player i is introduced, and each Ti has a
probability distribution Di. Assume that all players know D1, · · · , Dn, and the type
ti of player i is the outcome drawn from Di independently.

A Bayesian Nash equilibrium is de ned as a strategy pro le with which every type
of player is maximizing their expected payoffs given other type-contingent strate-
gies. Especially for player i with the strategy si : Ti → Si, a strategy pro le
{s∗1, · · · , s∗n} ∈ S is a Bayesian Nash equilibrium if

∀i, ti ∈ Ti, si ∈ Si, si �= s∗i : (3.10)

ED−i
[ui(ti, s

∗
i (ti), s

∗
−i(t−i))] > ED−i

[ui(ti, si(ti), s
∗
−i(t−i))]

However, Nash equilibrium may not be Pareto optimal from the global view. Nash
equilibrium checks whether a pro table payoff exists when other payoffs are un-
changed. Pareto ef ciency examines whether a pro table payoff exists without re-
ducing others’s payoffs. Therefore, for the egocentric agents in the cloud market, the
Nash equilibrium is more suitable than the Pareto ef ciency to evaluate the allocation
decisions.
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3.3 Cloud resource allocation model

Virtualization technology hides heterogeneous con guration details from cus-
tomers, and makes computation services functionally identical. Cloud users only
need to choose a proper computing capacity that meets their requirements and pay
according to the amount of usage. Cloud suppliers offer their customers more than
one payment solution. For example, Amazon EC2 provides three different purchas-
ing options: the on-demand model, the reserved model, and the spot model. Each
model has different applicable scopes and limitations [Yi et al., 2010]. In order to
satisfy more speci c demands, we study a bid-based model as a complementary pay-
ment option to give users the exibility to optimize their costs.

3.3.1 Bid-shared auction

In a cloud market, there are N users asking for services, each having a sequence
of tasks to complete. The maximum number of tasks is K. A Cloud provider entirely
virtualizes K resources, each of which can render a speci c service with a xed nite
capacity C.

C = [C1, C2, . . . , CK ] (3.11)

We characterize one task by its size, which means the amount of computing capabil-
ity required to complete the task.

q =

⎡⎢⎢⎢⎢⎢⎢⎣

q11 . . . q1k . . . q1K
...

. . .
...

. . .
...

qi1 . . . qik . . . qiK
...

. . .
...

. . .
...

qN1 . . . qNk . . . qNK

⎤⎥⎥⎥⎥⎥⎥⎦ (3.12)

Not all users have the same task itinerary; the size of an inexistent task is zero in the
above matrix q. If a task qik can occupy its corresponding resource Ck, the computa-
tion is processed fastest, at a speed of ωi

k = qik/Ck. However, in our model, resource
capacity is never for exclusive use but shared by multiple users. It is reasonable and
fair that resource partition is proportional to the user’s outlay. We assume that a
resource is always fully utilized and unaffected by how it is partitioned among users.

In the real commodity market, consumers needing the same commodity are com-
petitors, and are reluctant to cooperate with each other. Thus, resource allocation in
clouds is a non-cooperative allocation problem.

Every user has a bidding function, which decides the bid in any round consider-
ing task size, priority, QoS requirement, budget and deadline. The repeated bidding
behavior is considered as a stochastic process indexed by a discrete time set. The
outputs are random variables that have certain distributions, when these above deter-
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ministic arguments and time are xed.{
Bi(k), k ∈ (1, 2, . . . ,K)

}
(3.13)

Where Bi is the money that a user is willing to pay for one unit of resource per
second. User i bids for task k at price bik, which can be treated as a sample for Bi.

B =

⎡⎢⎢⎢⎢⎢⎢⎣

B1

...
Bi

...
BN

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣

b11 . . . b1k . . . b1K
...

. . .
...

. . .
...

bi1 . . . bik . . . biK
...

. . .
...

. . .
...

bN1 . . . bNk . . . bNK

⎤⎥⎥⎥⎥⎥⎥⎦ (3.14)

The sum Θk of total bids for task k indicates the resource price.

Θk =
∑N

i=1 b
i
k (3.15)

Meanwhile, θ−i
k =

∑N
j �=i b

j
k is given as the sum of other bids except bid bik.

The bid-shared model indicates that resource k obtained by the user i is propor-

tional to their bid price. The portion is xi
k =

bik∑N
i=1 bik

, and obviously,

∀k,
N∑
i=1

xi
k = 1

Time spent on task k is de ned by

tik =
qik

Ckxi
k

= ωi
k + ωi

k

θ−i
k

bik
(3.16)

Cost taken to complete task k is

eik = bikt
i
k = ωi

kθ
−i
k + ωi

kb
i
k (3.17)

Two illuminations are obtained from the time and cost functions.

3.3.2 Non-cooperative game

Both time and expenditure depend not only on bik that a user is willing to pay, but
also on θ−i

k that other competitors will pay. We therefore construct a non-cooperative
game to analyze the bid-shared model.

In games, the set of players is denoted by N cloud users. Any player i inde-
pendently chooses the strategy bik from their strategy space Bi. The preference is
determined by payoff, for example, we take computation time tik as the payoff. Each
player wishes their tasks to be computed as fast as possible, so the lower the payoff
value is, the better. Regardless of the value of θ−i

k , the dominant strategy of player i



48 Cloud Computing: Data-Intensive Computing and Scheduling

is a low value of bik if they want to get the optimal payoff. On the contrary, when we
choose cost as the game payoff, the dominated strategy is high value of bik, which is
different from the former dominated strategy. This difference alerts us that the pay-
off must be carefully selected in order to indicate the outcome preference of a game.
Absolute dependence on time or money is unreasonable.

We combine cost expense and computation time into an aggregate quantity, which
stands for the total amount of substituted consumption. Similar to the utility function
discussed above, constant elasticity of the substitution function indicates the players’
payoff

C =
ρeln

∑K
k=1 e

i
k + ρtln

∑K
k=1 t

i
k

ρe + ρt
(3.18)

where ρe, ρt are the output elasticities of cost and time, respectively.

3.4 Nash equilibrium allocation algorithms

3.4.1 Bid functions

In a cloud market, customers are rational decision makers who seek to minimize
their consumption, and have constraints of cost E = [E1, E2, . . . , EN ] and time
T = T [T 1, T 2, . . . , TN ]. With a limited budget Ei and deadline T i, the optimal
object function of user i is

Min C

s.t.
∑K

k=1 e
i
k ≤ Ei∑K

k=1 t
i
k ≤ T i

(3.19)

The Hamilton equation is built by introducing the Lagrangian

L =
ρeln

∑K
k=1 e

i
k + ρtln

∑K
k=1 t

i
k

ρe + ρt

+ λi
e(

K∑
k=1

eik − Ei) + λi
t(

K∑
k=1

tik − T i)

=
ρeln

∑K
k=1 (ω

i
kθ
−i
k + ωi

kb
i
k) + ρtln

∑K
k=1 (ω

i
k + ωi

k
θ−i
k

bik
)

ρe + ρt

+ λi
e(

K∑
k=1

(ωi
kθ
−i
k + ωi

kb
i
k)− Ei) + λi

t(

K∑
k=1

(ωi
k + ωi

k

θ−i
k

bik
)− T i)

L is a function of three variables of bik, λi
e and λi

t. To obtain the dynamic extreme
point, the gradient vector is set to zero.

∇L(bik, λi
e, λ

i
t) = 0 (3.20)
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1. Take partial derivative with respect to bik

∂L
∂bik

=
ρe

ρe + ρt

ωi
k∑
eik

− ρt
ρe + ρt

ωi
kθ
−i
k∑

tikb
i
k
2 + λi

eω
i
k − λi

t

ωi
kθ
−i
k

bik
2 = 0 (3.21)

which gives
ρe∑
eik

+ λi
e

ρt∑
tik

+ λi
t

=
θ−i
k

(bik)
2

(3.22)

A similar result is obtained by setting the gradient of L at bij to zero ∂L
∂bij

= 0,

ρe∑
eik

+ λi
e

ρt∑
tik

+ λi
t

=
θ−i
j

(bij)
2

(3.23)

For user i, the capital sum
∑

eik and time sum
∑

tik remain the same for any
two tasks; we could therefore determine the relationship between any two bids
in one task sequence, which is

θ−i
k

(bik)
2
=

θ−i
j

(bij)
2

(3.24)

Then bid k is expressed by bid j, bik = bij

√
θ−i
k

θ−i
j

.

Given Θk , preferences ρe and ρt exert major in uence on bids. To be more
speci c, ρe > ρt reveals that one user prefers satisfying budget to deadline,
otherwise, the deadline constraint is more important than cost consumption.

2. Take partial derivative with respect to λi
e

∂L
∂λi

e

=
K∑

k=1

eik − Ei =
K∑

k=1

ωi
k(b

i
k + θ−i

k )− Ei = 0 (3.25)

Substituting bij for

√
θ−i
j

θ−i
k

bik, the equation is expanded

∑k−1
j=1 ω

i
j(

√
θ−i
j

θ−i
k

bik + θ−i
j ) + ωi

k(b
i
k + θ−i

k )

+
∑K

j=k+1 ω
i
j(

√
ˆ

θ−i
j

θ−i
k

bik + ˆθ−i
j )− Ei = 0

(3.26)

Simplifying the above equation, user i will bid for task k at price

bik =
Ei −∑k−1

j=1 ω
i
jθ
−i
j − ωi

kθ
−i
k −∑K

j=k+1 ω
i
j
ˆθ−i
j∑k−1

j=1 ω
i
j

√
θ−i
j

θ−i
k

+ ωi
k +

∑K
j=k+1 ω

i
j

√
ˆ

θ−i
j

θ−i
k

(3.27)
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3. Take partial derivative with respect to λi
t

∂L
∂λi

t

=
K∑

k=1

tik − T i =
K∑
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ωi
k(b

i
k + θ−i

k )

bik
− T i = 0 (3.28)

The expanded expression is obtained

∑k−1
j=1 ω

i
j(

√
θ
−i
j

θ
−i
k

bik+θ−i
j√

θ
−i
j

θ
−i
k

bik

) + ωi
k(

bik+θ−i
k

bik
) +

∑K
j=k+1 ω

i
j(

√√√√ ˆ
θ
−i
j

θ
−i
k

bik+
ˆ

θ−i
j√√√√ ˆ

θ
−i
j

θ
−i
k

bik
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(3.29)

The above equation is further simpli ed by

bik =

∑k−1
j=1 ω

i
j

√
θ−i
j θ−i

k + ωi
kθ
−i
k +

∑K
j=k+1 ω

i
j

√
ˆθ−i
j θ−i

k

T i −∑K
j=1 ω

i
j

(3.30)

Equation (3.27) and equation (3.30) show the in uences of budget and deadline
on bidding price bik,respectively. Both equations reveal that current bid bik is de-
cided by competitors’ bids in past θ−i

j (j < k), present θ−i
k , and future θ−i

j (j > k).
If bidding functions are based on the assumption that all other payments are xed
throughout the network, the model is classi ed as a static game of complete infor-
mation [Gibbons, 1992]. However, these isolated cloud users are unable to collect
all rivals’ nancial information in a real market, and the resource allocation problem
evolves into the game of incomplete information. In that case, bik is a function with

respect to a vector [θ−i
1 , · · · , θ−i

k , ˆθ−i
k+1, · · · , ˆθ−i

K ], only if the expectation of future

bids ˆθ−i
k+1, · · · , ˆθ−i

K are estimated precisely.

3.4.2 Parameters estimation

The existence of the Nash Equilibrium with complete information has been proved
by Bredin [Bredin et al., 2003]. However, new problems arise when buyers do not
intend to expose their bids to other competitors or when they are allowed to join or
leave a datacenter from time to time. How does one deal with the lack of informa-
tion? How do users predict the price trend on the basis of inadequate knowledge?
We record historical purchasing prices Θ1, · · · Θk−1 in past auctions, and then use
statistical forecasting method to evaluate the future price.

In probability theory, Bayes’ theorem shows how the probability of a hypothesis
depends on its inverse if observed evidence is given. The posteriori distribution can
be calculated from the priori p(Θ), and its likelihood function p(Θ | Θk) is

p(Θ | Θk) =
p(Θk|Θ)p(Θ)∫
p(Θk|Θ)p(Θ)dΘ

(3.31)
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The posteriori hyperparameters p(Θ|Θk) can be achieved by using the Bayesian
learning mechanism, the value of which determines the maximum likelihood predic-
tion of resource price. So future bids are forecasted as

ˆθ−i
k+1 = E(Θ|Θk)− E(Bi)

...
ˆθ−i
K = E(Θ|ΘK−1)− E(Bi)

(3.32)

Three parameters αi
k, βi

k and γi
k are introduced, which stand for information from

other competitors.
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(3.33)

Substituting θ−i
k by Θk − bik in equation (3.27), we obtain the explicit function

f i
k(Θk) with respect of Θk.

f i
k(Θk) =

(Ei−αi
k−ωi

kΘk)
2

2(βi
k)

2

(√
1 +

4(βi
k)

2Θk

(Ei−αi
k−ωi

kΘk)2
− 1

)
(3.34)

Figure 3.2 shows that task bid is decided not only by its budget, but also by its
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FIGURE 3.2: Bid under budget constraint.

workloads. Compared with the solid line, the dot dash line shows that a wealthier
user is capable of submitting a larger positive bid and has a larger participated bid
range. On the contrary, the user with a heavy workload has to save cash for the
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following competitions, so the money allocated to the current task is very limited,
which is shown by softened dash line.

Substituting θ−i
k by Θk − bik in equation (3.30), we obtain the explicit function

gik(Θk) with respect of Θk, which characterizes bid price under deadline constraint.

gik(Θk) =
ωi

k

T i−γi
k

Θk +

√
(βi

k)
4+4(βi

k)
2(T i−γi

k)(T
i−γi

k−ωi
k)Θk

2(T i−γi
k)

2 − (βi
k)

2

2(T i−γi
k)

2
(3.35)

As seen from equation (3.35), gik(Θk) is a monotone increasing function with respect
to Θk, which means that bids can grow to in nite if the budget constraint is omitted.
Obviously, exorbitant price would not deter the users who have suf cient capital, so
vicious competition can not be restrained. In Figure 3.3, the dot dash line illustrates
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FIGURE 3.3: Bid under deadline constraint.

that one user will not be in a hurry to make a high bid for suf cient resource if he has
enough time. Thus, the user can control his expenditure more effectively. As seen
from softened dash line, longer task runtime needs more computing capacity, so the
bidding price rises accordingly. The bid functions under budget and deadline con-
straints are compared in Figure 3.4. The range of possible bids enlarges accordingly
when constraints are loosened. The intersection of the two solid lines signi es that
budget and deadline are both exhausted at the same time. If deadline is extended, the
solid budget curve meets the dashed deadline curve at a lower position. It indicates
that the possible bid should be above the solid deadline curve in order to complete
all tasks in nite time. For the same reason, if one user holds more funds, the inter-
section moves right along the solid deadline curve, so the left side of solid budget
curve will contain the possible bids. The bid region is surrounded by cross and plus
curves. Speci cally, the crosses mean that all capital is used up with time remaining,
while the pluses mean that deadline is reached with redundant money. Outside this
region, there is no feasible bidding solution, which indicates the given constraints are
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FIGURE 3.4: Bid under double constraints.

too rigid. Users must loosen either of the two constraints slightly if they still wish to
accomplish this impossible mission. Furthermore, regardless of whether the budget
or deadline constraints are relaxed, the range Θk over which users can participate is
stretched.

The cross curve is chosen as the new bidding function hi
k(Θk) under double con-

straints, because higher bids are more competitive in terms of a xed Θk.

hi
k(Θk) =

{
f i
k(Θk) : f i

k(Θk) ≥ gik(Θk)
0 : f i

k(Θk) < gik(Θk)
(3.36)

3.4.3 Equilibrium price

The bid functions of any user i have been deduced. Next, we analyze whether an
equilibrium price exists and how it is obtained.

In the beginning, users who need resource k make their initial bids,

Θ
(1)
k =

∑
N

bik (3.37)

In the rst round, money that users are asked to pay for the resource partition is
calculated by bid function hi

k(Θ
(1)
k ). A general expression is

b
i(m)
k = hi

k(Θ
(m)
k ) (3.38)

where m means values are in the mth round. Hence, the price that the cloud provider
prepares to charge from N users is actually

Θ
(m+1)
k =

∑
N

hi
k(Θ

(m)
k ) (3.39)
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The corresponding partition is xi(m)
k = b

i(m)
k /Θ

(m+1)
k . If anyone disagrees with the

allocation due to either insuf cient resource, or high cost, iteration will continue.
Users can adjust their bids in the next round. If all users satisfy their allocation
proportions, the current price

Θ
(m+1)
k = Θ

(m)
k (3.40)

The resource price Θ(m+1)
k is agreed to by every user, so this is an equilibrium price.

In game theory, the Nash Equilibrium occurs when no user can obtain more re-
source by changing his bid while others keep theirs unchanged, that is

bi∗k = Max x(bik, θ
−i∗
k ) (3.41)

Where bi∗k is equilibrium bid and θ−i∗
k = Θ∗k − bi∗k is equilibrium performance of

his competitors. When demand is higher than provision
∑

N xi
k > 1, users tend to

pay more to improve their own allocation proportion, so the resource price increases
accordingly. High resource price will then reduce xi

k until
∑

N xi
k approaches one.

The reverse situation
∑

N xi
k < 1 is also true. In conclusion, resource price has

a negative impact on the value of
∑

N xi
k, and pushes it to the situation where the

resource is fully utilized
∑

N x
i(m)
k = 1. Therefore,

∑
N xi

k can be considered as a
descending function with respect of Θk. Different resource prices Θ∗k1 �= Θ∗k2 have
different values of

∑
N xi

k, so the equilibrium price Θ∗k that let
∑

N xi
k = 1 is unique

and a Nash Equilibrium exists. Figure 3.5 shows the equilibrium resource price for a
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FIGURE 3.5: Equilibrium resource price under double constraints.

dynamic system under the condition that all users have similar bid distributions. The
line with a slope equal to one shows that the bid function sum

∑
h(Θk) of task k is

equal to Θk. The intersection of this line and the curve
∑

h(Θk) stands for the only
stable solution. From this gure, we can observe how the nal equilibrium price is
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affected by different numbers of users. An increasing number of competitors raises
the bid sum and makes the resource more expensive. A user has to bid against more
competitors if he really needs this resource. As a result, the resource price soars.
Once the price becomes too high, some users quit the competitive bidding and the
resource price will consequently decrease quickly.

3.5 Implementation in a cloud datacenter

Although there are several commercial cloud computing infrastructures, such as
Aneka, Azure, EC2 and Google App Engine, building a cloud testbed on a real infras-
tructure is expensive and time consuming. It is impossible to evaluate performances
of various application scenarios in a repeatable and controllable manner. We there-
fore apply simulation methodology for performance evaluation of resource allocation
algorithms.

3.5.1 Cloudsim toolkit

Cloudsim [Buyya et al., 2009b] is designed to emulate cloud-based infrastructure
and application service, and can be used in research on economy driven resource
management policies on large scale cloud computing systems. Researchers bene-

t from focusing on resource allocation problems without implementation details.
These features are not supported by other cloud simulators [Buyya et al., 2009b].

We apply Cloudsim as our simulation framework, but make some improvements
aiming at the following shortcomings. First, sequential auctions are complemented,
accompanied by several speci c policies. Second, Cloudsim only supports static as-
signment with pre-determined resources and tasks. We realize that multiple users
can submit their tasks over time according to certain arrival rates or probability dis-
tribution and that resource nodes can freely join or leave a cloud datacenter. The
assignment in our simulation model is much closer to a real market than before.

3.5.2 Communication among entities

There are four types of entities to be simulated. CIS Registry provides a database
level match-making service for mapping application requests to a datacenter. A dat-
acenter integrates distributed hardware, database, storage devices, application soft-
ware and operating systems to build a resource pool, and is in charge of virtualizing
applicable computing resources according to users’ requests. Cloud users have in-
dependent task sequences, and they purchase resources from datacenters to execute
tasks. All these users bid according to their economic capabilities and priorities un-
der different constraints. An auctioneer is the middleman in charge of maintaining
an open, fair and equitable market environment. In accordance with the rules of
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market economy, the auctioneer xes an equilibrium price for non-cooperative users
to avoid blind competition. Figure 3.6 depicts the ow of communication among

FIGURE 3.6: Flowchart of communication among entities.

the main entities. At the beginning, the datacenter initializes current available hosts,
generating provision information and registers in CIS. Meanwhile, cloud users who
have new tasks report to the auctioneer and queue up in order of arrival time. At
regular intervals, the auctioneer collects information and requests the datacenter to
virtualize corresponding resources. Once virtual machines are ready according to
users’ service requirements, the datacenter sends the provision information to the
auctioneer, and successive auctions start.
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In each auction stage, users ask the auctioneer individually about con guration
information such as virtual machine provision policy, time zone, bandwidth, residual
computing processors, and then bid according to their asset valuations. The auc-
tioneer collects all bids, then informs users of the sum of bids. Under the game of
incomplete information, cloud users only know their own price functions as well
as the incurred sum of bids. They dynamically predicate the future resource price,

and update competitors’ information [θ−i
1 , · · · , θ−i

k , ˆθ−i
k+1, · · · , ˆθ−i

K ]. Subsequently,
holding all price functions, the auctioneer makes an equilibrium allocation decision
and inquires whether everyone is satis ed with the result. If the result is agreeable,
the auctioneer publishes allocation proportions to the datacenter and users. Users
then execute their tasks and pay for the resource allocated. At the end, the datacenter
deletes the used VMs and waits for new service demands.

3.5.3 Bidding algorithms

Concrete algorithms for users and auctioneer are explained in more detail by Al-
gorithm 3.5.1 and Algorithm 3.5.2.

From a user’s point of view, after task submission, an observer focuses on ana-
lyzing the received messages that prescribe the user’s next move. If the auctioneer
announces a new auction, the user adds it to the auction list. If bids are called, an
appropriate bid is calculated and reported to the auctioneer. If the user receives the
message calling for parameters, he examines the historical prices and estimates the
future bid sum by Bayesian learning mechanism, then sends information back. Fi-
nally, if the user receives the resource price and proportion, he immediately updates
his price list and begins to execute the task. From an auctioneer’s perspective, a new
auction is triggered whenever a new type of task arrives. Once an auction begins, the
auctioneer broadcasts the bid calling message to current users. As soon as all pro-
posals arrive, the auctioneer informs users of the sum Θk . Similarly, the auctioneer
collects bidding function parameters from all the bidders, and then decides a rea-
sonable bound. If the bound is too narrow, poor users quit gambling. The resource
price is modi ed repeatedly until the difference between

∑
hi
k and Θk is less than a

predetermined threshold. Once the equilibrium price is found, allocation proportions
are broadcast to all cloud users. After that, the auctioneer deletes the current auction
and waits for a new task request.

3.5.4 Comparison of forecasting methods

First, normal distribution is used to describe the nancial capability of the users.
Bidding function Bi has mean μi and variance σ2. We choose one user as our ob-
servable object, and assign a mean purchasing price of 10$/s and a bid variance of
0.1. Other mean bids are generated randomly in the range of 1–100$/s. This user
is unaware of other economic situations, but keeps on estimating others from their
prior behaviors. Figure 3.7 illustrates how the closing price changes as time goes by.
We conclude that budget exerts a huge in uence on preliminary equilibrium price,
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Algorithm 3.5.1 User i bidding algorithm.
1: submit tasks to auctioneer
2: if observer receives message of inform start then
3: add current auction
4: end if
5: if observer receives message of call for bids then
6: set {bi1, · · · , bik−1} ← bik
7: send message of proposal to auctioneer
8: end if
9: if observer receives message of call for parameters then

10: inquiry historical price θ−i
1 , · · · , θ−i

k

11: forecast future price ˆθ−i
k+1, · · · , ˆθ−i

K

12: send message of competitors information to auctioneer
13: end if
14: if observer receives message of resource price then
15: {Θ1, · · · ,Θk−1} ← Θk

16: send message of task execution to resource
17: delete current auction
18: end if
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FIGURE 3.7: Convergence of Nash equilibrium bid.

because self-interested but rational users always wish to seek extra bene ts from
others. With limited budget, the user will behave conservatively at the initial stages,
to avoid overrunning the budget and to save enough money to complete remaining
tasks. Therefore, in the beginning, the equilibrium price is lower than the mean
price. On the contrary, if the user has suf cient capital, he is eager to improve cur-
rent payment to get a larger proportion. Competition leads the equilibrium price to
rise, higher than the anticipated cost. However, with the money available for the cur-
rent job decreasing, the user becomes less aggressive. As bidding is underway, price
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Algorithm 3.5.2 Auctioneer allocation algorithm.
Require: N ≥ 2

1: initialize auctioneer
2: while auction k do
3: set bidders to auction k
4: broadcast message to call for bids
5: while bidder’s proposal arrives do
6: collect proposal message from bidder
7: end while
8: broadcast message to inform Θk

9: while bidder’s parameter arrives do
10: collect parameter message from bidder
11: end while
12: while bidders disagree proportion do
13: for all cloud users do
14: build new bid function hi

k

15: end for
16: difference =

∑
hi
k −Θk

17: if difference > threshold then
18: Θk =

∑
hi
k

19: else
20: exit
21: end if
22: update vector [θ−i

1 , · · · , θ−i
k , ˆθ−i

k+1, · · · , ˆθ−i
K ]

23: end while
24: broadcast message to inform resource price
25: stop the current and wait for a new auction
26: end while
27: delete auctioneer

will gradually converge to the original mean value. Next, the accuracy of Bayesian
learning prediction is evaluated when the cloud market is full of uncertainties, such
as insuf cient common knowledge and on-line task submitting. Figure 3.8 exhibits
the predication of resource price in a dynamic game of incomplete information. If the
common knowledge is insuf cient, the user experientially predicts other bids using
the published equilibrium prices. When the bidding variance is low, no more than
0.01, the estimation works quite well. Our policy differs a little from the scheme that
hypothesizes that all users’ information is xed and public. If users perform unstably
in the gambling process and the offered bids are more random, accurate price forecast
becomes dif cult. Provided that rivals’ information is learned iteratively, experiment
results show that the resource price still converges to the equilibrium price stage by
stage.

Three forecasting methods are compared, including Bayesian learning, historical
averaging and last-value following. Figure 3.9 shows the standard deviations of three
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FIGURE 3.9: Forecast errors with normal distribution.

forecast methods versus time series. All three forecasting methods are able to con-
verge to the result with perfect information, as long as the user keeps on training his
estimates of others’ bid functions over time. The cases with abundant budgets are
examined. Some users would like to increase bids to obtain more resource, so the
price keeps rising, to much higher than the estimated bid. If all the historical prices
are used for prediction, the history averaging method behaves poorly at the beginning
of auctions, and is less stable than the other two methods. Compared with the last-
value method, Bayesian learning converges in a smoother manner, because historical
prices are used to calculate the likelihood function, rather than simply following the
price in the previous auction as in the last-value method. Now we apply another
distribution, Pareto, to express users’ bidding rules, meanwhile keeping other exper-
iment setups the same. A similar conclusion can be reached in Figure 3.10, except
that the worst forecast is the last-value method. The result is due to the attribute of
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FIGURE 3.10: Forecast errors with Pareto distribution.

Pareto distribution. The Pareto principle stands for the probability that the variable
is greater than its minimum, while normal distribution reveals how close data clus-
ters are around its mean. For one speci c round of bidding, it’s more dif cult to
estimate the precise value with Pareto distribution than with normal distribution. In
other words, the more historical data is accumulated, the more accurate the forecast
will be. In Figure 3.10, convergence of Bayesian learning is still the most stable one
of the three schemes. As a result, it is recommended as a forecast method in practical
applications.

3.6 Concluding remarks

In this chapter, we solved the resource allocation problem in the user-level of
cloud scheduling. We surveyed game theory, covering the different classes of games
and their applications, payoff choice and utility function, as well as strategic choice
and Nash equilibrium. Based on that, we built a non-cooperative game to solve the
multi-user allocation problem in a cloud scenario. The scheduling model includes
bid-shared auction, user strategy (bid function), price forecasting and equilibrium
analysis.

We then proposed game theoretical algorithms for user bidding and auctioneer
pricing. We supplemented a bid-shared auction scheme in a cloud simulation frame-
work, Cloudsim, in order to realize sequential games. Results show that resource
allocation can reach Nash equilibrium among non-cooperative users even though
common knowledge is insuf cient, and that the Bayesian learning forecast has the
best and most stable performance. Therefore, our algorithms support nancially
smart customers with an effective forecasting method and help an auctioneer decide
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on an equilibrium resource price, so that they can potentially solve resource alloca-
tion problems in cloud computing.



Chapter 4

Multi-dimensional data analysis in a
cloud datacenter

4.1 Introduction

Multi-dimensional data analysis applications are largely used in computing tech-
nologies for the identi cation, discovery and analysis of business data. Enterprises
generate massive amounts of data every day. This data comes from various as-
pects of their products, for instance, the sale statistics of a series of products in each
store. The raw data is extracted, transformed, cleansed and then stored under multi-
dimensional data models, such as the star-schema1. Users query this data to help
make business decisions. The queries are usually complex and involve large-scale
data access. Here are some features for multi-dimensional data analysis queries:

• queries access large datasets performing read-intensive operations;

• queries are often quite complex and require different views of data;

• query processing involves many aggregations;

• updates can occur but infrequently, and can be planned by the administrator to
execute at an expected time.

Data Warehouse is the type of software designed for multi-dimensional data analysis.
However, faced with larger and larger volumes of data, the capacity of a centralized
Data Warehouse seems too limited. The amount of data is increasing; the number of
concurrent queries is also increasing. The scalability issue became a big challenge
for centralized Data Warehouse software. In addition, short response time is also
challenging for centralized Data Warehouse to process large-scale data. The solution
addressing this challenge is to decompose and distribute the large-scaled dataset, and
calculate the queries in parallel.

Three basic distributed hardware architectures exist, including shared-memory,
shared-disk, and shared-nothing. Shared-memory and shared-disk architectures can-
not scale well with the increasing dataset scale. The main reason is that these two dis-
tributed architectures require a large amount of data exchange over the interconnec-
tion network. However, the interconnection network cannot be in nitely expanded,

1A star schema consists of a single fact table and a set of dimension tables.
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which becomes the main shortcoming of these two architectures. On the contrary,
shared-nothing architecture minimizes resource sharing and therefore minimizes the
resource contentions. It fully exploits local disk and memory provided by a commod-
ity computer. It does not need a high-performance interconnection network, because
it only exchanges small-sized messages over network. Such an approach minimiz-
ing network traf c allows more scalable design. Nowadays, the popular distributed
systems have almost all adopted the shared-nothing architectures, including peer-to-
peer, cluster, Grid, and the Cloud. The research work related to data over shared-
nothing distributed architectures is also very rich. For instance, parallel database
like Gamma [DeWitt et al., 1986], the DataGrid project [DataGrid Project, 2012],
BigTable [Chang et al., 2008] etc. are all based on shared-nothing architecture.

In the distributed architecture, data is replicated on different nodes, and query
is processed in parallel. To accelerate multi-dimensional data analysis query pro-
cessing, many optimizing approaches were proposed. The traditional optimizing
approaches, used in centralized Data Warehouse, mainly include pre-computing, in-
dexing techniques and data partitioning. These approaches are still very useful in
the distributed environment. In addition, a great deal of work has also been done to
parallelize the query processing. In this chapter, we will talk about three approaches
to accelerating query processing as well as their utilizations in a distributed environ-
ment. We will present parallelism of various operators, which are widely used in
parallel query processing.

4.2 Pre-computing

The pre-computing approach resembles the materialized views optimizing mecha-
nism used in database systems. In a multi-dimensional data context, the materialized
views become data cubes2. Data cubes store the aggregates for all possible combi-
nations of dimensions. These aggregates are used to answer the forthcoming queries.

For a cube with d attributes, the number of sub-cubes is 2d. With the augmentation
of the number of cube’s dimensions, the total volume of a data cube will exponen-
tially increase. Thus, such an approach produces data of a much larger volume than
the original dataset, which might not have good scalability faced with the require-
ment of processing larger and larger datasets. Despite this, the pre-computing is still
an ef cient approach to accelerating query processing in a distributed environment.

2Data Cube is proposed in [Jim et al., 1998]; it is described as an operator, it is also called cube for short.
Cube generalizes the histogram, cross-tabulations, roll-up, drill-down, and sub-total constructs, which are
mostly calculated by data aggregation.
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4.2.1 Data cube

Constructing a data cube in a distributed environment is one of the research topics.
The reference [Sanjay and Alok, 1997] proposed some methods for the construction
of data cubes on distributed-memory parallel computers. In their work, the data cube
construction consists of six steps:

• Data partitioning among processors.

• Loading data into memory as a multi-dimensional array.

• Generating a schedule for the group-by aggregations.

• Performing the aggregation calculations.

• Redistributing the sub-cubes to processors for query processing.

• De ning local and distributed hierarchies on all dimensions.

In the data loading step (step 2), the size of the multi-dimensional array in each
dimension equals the number of distinct values in each attribute; each record is rep-
resented as a cell indexed by the values3 of each attribute. This step adopted two
different methods for data loading: a hash-based method and a sort-based one. For
small datasets, both methods work well, but for large datasets, the hash-based method
works better than the sort-based method, because of its inef cient memory usage4.
The cost for aggregating the measure values stored in each cell varies. The reason is
that the whole data cube is partitioned over one or more dimensions, and thus some
aggregating calculations involve the data located on other processors. For example,
for a data cube consisting of three dimensions A, B and C, being partitioned over
dimension A, then aggregations for the series of sub-cubes ABC→AB→A involve
only local calculations on each node. However, the aggregations of sub-cube BC
need the data from the other processors.

4.2.2 Sparse cube

Sparsity is an issue of data cube storage. In reality, the sparsity is a common case.
Take an example of a data cube consisting of three dimensions (product, store, cus-
tomer). If each store sells all products, then the aggregation over (product, store)
produces |product| × |store| records. When the number of distinct values for each
dimension increases, the product of the above formula will greatly exceed the num-
ber of records coming from the input relation table. When a customer enters a store,
he/she cannot buy 5% of all the products. Thus, many records related to this customer
will be an “empty cell.” In the work of [Goil and Choudhary, 1999], the authors ad-
dressed the problem of sparsity in multi-dimensional array. In this work, data cubes

3The value of each attribute is a member of the distinct values of this attribute.
4The Sort-based method is accepted to work ef ciently because in external memory algorithms it reduces
the disk I/O over the hash-based method.



66 Cloud Computing: Data-Intensive Computing and Scheduling

are divided into chunks, each chunk being a small equal-sized cube. All cells of a
chunk are stored contiguously in memory. Some chunks, called sparse chunks, only
contain sparse data. To compress the sparse chunks, they proposed a Bit-Encoded
Sparse Storage (BESS) coding method. In this coding method, for a cell located in
a sparse chunk, a dimension index is encoded in �log |di| bits for each dimension
di. They demonstrated that data compressed in this coding method could be used for
ef cient aggregation calculations.

4.2.3 Reuse of previous query results

Apart from utilizing pre-computed sub-cubes to accelerate query processing, one
also tried to reuse the previous aggregate query results. With previous query results
being cached in memory, if the next query, say Qn, is evaluated to be contained
within one of the previous queries, sayQp, thusQn can be answered using the cached
results calculated for Qp. The case where Qp and Qn have an entire containment
relationship is just a special case. In a more general case, the relationship between
Qp and Qn is only overlap, which means only part of the cached results of Qp can be
used for Qp. To address this partial-matching issue, the reference [Deshpande et al.,
1998] proposed a chunk-based caching method to support ne granularity caching,
allowing queries to partially reuse the results of previous queries with which they
overlap. Another work [Liao and Pei, 2008] proposed a hybrid view caching method
which gets the partially-matched result from the cache, and calculates the rest of
the result from the component database, and then combines the cached data with
calculated data to reach the nal result.

4.2.4 Data compressing

Because the size of data cube growth is exponential with the number of dimen-
sions, when the number of dimensions increases to a certain extent, the correspond-
ing data cube will explode. In order to address this issue, some data cube compress-
ing methods are proposed. For instance, Dwarf [Sismanis et al., 2002] is a method of
constructing compressed data cubes. Dwarf considers eliminating pre x redundancy
and suf x redundancy over cube computation and storage. The pre x redundancy
commonly appears in the dense area, while the suf x redundancy appears in the
sparse area. For a cube with dimensions (a, b, c), there are several group-bys, includ-
ing a: (a, ab, ac, abc). Assuming that the dimension a has two distinct values a1,
a2, dimension b has b1, b2 and dimension c has c1, c2, in the cells identi ed by (a1,
b1, c1), (a1, b1, c2), (a1, b1), (a1, b2), (a1, c1), (a1, c2) and (a1), the distinct value
a1 appears seven times, which causes a pre x redundancy. Dwarf can identify this
kind of redundancy and store each unique pre x only once. For example, for aggre-
gate values of three cells (a1, b1, c1), (a1, b1, c2), and (a1, b1), the pre x (a1, b1)
is associated with one pointer pointing to a record with three elements (agg(a1, b1,
c1), agg(a1, b1, c2), agg(a1, b1)). Thus the storage of cube cell identi ers, i.e. (a1,
b1, c1), (a1, b1, c2), and (a1, b1), is reduced to storage of one pre x(a1, b1) and one
pointer. The suf x redundancy occurs when two or more group-bys share a common
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suf x (like, (a, b, c) and (b, c)). If a and b are two correlated dimensions, some value
of dimension a, say ai, only appears together with another value bj of dimension b.
Then the cells (ai, bj , x) and (bj , x) always have the same aggregate values. Such a
suf x redundancy can be identi ed and eliminated by Dwarf during the construction
of cube. Thus, for a cube of 25 dimensions of one petabyte, Dwarf reduces the space
to 2.3 GB within 20 minutes.

The condensed cube [Wang et al., 2002] is also a way of reducing the size of a data
cube. It reduces the size and the time required for computing the data cube. How-
ever, it does not adopt the approach of data compression. No data decompression
is required to answer queries, nor is on-line aggregation required when processing
queries. Thus, no additional cost is incurred during the query processing. The cube
condensing scheme is based on the Base Single Tuple (BST) concept. Assume a
base relation R (A, B, C, . . . ), and the data cube Cube(A,B,C) is constructed from
R. Assume that attribute A has a sequence of distinct values a1, a2...an. Considering
a certain distinct value ak, where 1 ≤ k ≤ n, if among all the records of R, there
is only one record, say r, containing the distinct value ak, then r is a BST over di-
mension A. To be noted, one record can be a BTS on more than one dimension. For
example, continuing the previous description, if the record r contains distinct value
cj on attribute C, and no other record contains cj on attribute C, then record r is
the BST on C. The author gave a lemma saying that if record r is a BST for a set
of dimensions, say SD, then r is also the BTS of the superset of SD. For example,
consider record r, a BST on dimension A, then r is also the BST on (A, B), (A, C),
(A, B, C). The set containing all these dimensions is called SDSET . The aggre-
gates over the SDSET of a same BST r always concern the same record r, which
means that any aggregate function aggr() only applies on record r. Thus, all these
aggregate values will have equal value aggr(r). Thus, only one unit of storage is
required for the aggregates of the dimensions and combination of dimensions from
SDSET .

4.3 Data indexing

Data indexing is an important database system technology, especially when good
performance of read-intensive queries is critical. The index is composed of a set of
particular data structures specially designed for optimizing the data access. When
performing read operations over the raw dataset, within which the column values
are randomly stored, only full table scan can achieve data item lookup. In con-
trast, when performing read operations over an index, where data items are specially
organized, and the auxiliary data structures are added, the read operations can be
performed much more ef ciently. For queries of read-intensive characteristics, such
as multi-dimensional data analysis query, index technology is an indispensable aid
to accelerate query processing. Compared with other operations running within the
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memory, the operations for reading data from the disk might be the most costly.
One real example cited from [O’Neil and Quass, 1997] can demonstrate this: “we
assume 25 instructions needed to retrieve the proper records from each buffer resi-
dent page. Each disk page I/O requires several thousand instructions to perform.” It
is clear that data accessing operations are very expensive, especially if it becomes
the most common operation in the read-intensive multi-dimensional data analysis
application. Indexing data improves the data accessing ef ciency by providing the
particular data structures. The performance of index structures depends on different
parameters, such as the number of stored records, the cardinality of the dataset, the
disk page size of the system, the bandwidth of disks and latency time etc. The index
techniques used in Data Warehouse come from the index of databases. Many useful
indexing technologies are proposed, such as, B-tree/B+-tree index [Douglas, 1979],
projection index [O’Neil and Quass, 1997], Bitmap index [O’Neil and Quass, 1997],
Bit-Sliced index [O’Neil and Quass, 1997], join index [Valduriez, 1987], inverted
index [Cutting and Pedersen, 1990] etc. We will review these interesting index tech-
nologies in this section.

4.4 Data partitioning

In order to reduce the resource contention5, a distributed parallel system often
uses an af nity scheduling mechanism, giving each processor an af nity process to
execute. Thus, in a shared-nothing architecture, this af nity mechanism tends to be
realized by data partitioning; each processor processes only a certain fragment of the
dataset. This forms the preliminary idea of data partitioning.

Data partitioning can be logical or physical. Physical data partitioning means
reorganizing data into different partitions, while logical data partitioning will greatly
affect physical partitioning. For example, a design used in Data Warehouse, namely
data mart, is a subject-oriented, logical data partitioning. In a Data Warehouse built
in an enterprise, each department is interested only in a part of the data. Then, the
data partitioned and extracted from Data Warehouse for this department is referred
to as a data mart. As we are more interested in the physical data access issue, we
will focus on the physical data partitioning techniques.

4.4.1 Data partitioning methods

Data partitioning allows one to exploit the I/O bandwidth of multiple disks by
reading and writing in parallel. That increases the I/O ef ciency of disks without
needing any specialized hardware [DeWitt and Gray, 1992]. Horizontal partitioning
and vertical partitioning are two main methods of data partitioning.

5Resource contention includes disk bandwidth, memory, network bandwidth, etc.
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4.4.1.1 Horizontal partitioning

Horizontal partitioning conserves the record’s integrality. It divides tables, indexes
and materialized views into disjoint sets of records that are stored and accessed sep-
arately. Previous studies show that horizontal partitioning is more suitable in the
context of relational Data Warehouses [Bellatreche et al., 2004]. There are mainly
three main types of horizontal partitioning, round-robin partitioning, range parti-
tioning and hash partitioning.

Round-robin partitioning. Round-robin partitioning is the simplest strategy to
dispatch records among partitions. Records are assigned to each partition in a round-
robin fashion. Round-robin partitioning works well if the applications access all
records in a sequential scan. Round-robin does not use a partitioning key, and then
records are randomly dispatched to partitions. Another advantage of round-robin is
that it provides good load balancing.

Range partitioning. Range partitioning uses a certain attribute as the partitioning
attribute, and records are distributed among partitions according to the values of
their partitioning attribute. Each partition contains a certain range of values on an
indicated attribute. For example, table CUSTOMER INFO stores information about
all customers. We de ne column ZIP-CODE as the partition key. We can range-
partition this table by giving zip-code as a rule between 75,000 and 75,019. The
advantage of range partitioning is that it works well when applications sequentially
or associatively access data6, since records are clustered after being partitioned. Data
clustering puts related data together in physical storage, i.e. the same disk pages.
When applications read the related data, the disk I/Os are limited. Each time one
disk page is read, not only the targeted data item, but also other needed data items of
potential operations are fetched into memory. Thus, Range partitioning makes disk
I/Os more ef cient.

Hash partitioning. Hash partitioning is ideally suitable for applications that
access data in a sequential manner. Hash partitioning also needs an attribute as the
partitioning attribute. Records are assigned to a particular partition by applying a
hash function over the partitioning key attribute of each record. Hash partitioning
works well with both sequential data access applications and associative data access
ones. It can also handle data with no particular order, such as alphanumeric product
code keys.

The problem with horizontal partitioning is that it might cause data skew, where
all required data for a query is put in one partition. Hash partitioning and round-robin
partitioning are less likely to cause data skew, but range partitioning may cause this
relatively easily.

6Associative data accessing means accessing all records holding a particular attribute value.
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4.4.1.2 Vertical partitioning

Another data partitioning method is vertical partitioning, which divides the orig-
inal table, index or materialized view into multiple partitions containing fewer
columns. Each partition has a full number of records, but partial attributes. As
each record has fewer attributes, the record size is smaller. Thus, each disk page can
hold more records, which allows query processing to reduce disk I/Os. When the
cardinality of the original table is large, this bene t is more obvious.

However, vertical partitioning has some disadvantages. First, updating (insert or
delete) records in a vertically partitioned table involves operations over more pro-
cessors. Second, vertical partitioning breaks the record integrality. Nevertheless,
vertical partitioning is useful in some speci c contexts. For example, it can sepa-
rate frequently updated data (dynamic data) columns from static data columns; the
dynamic data can be physically stored as a new table. In the processing of data
read-intensive OLAP queries, vertical partitioning has its own advantages:

• By isolating certain columns, it is easier to access data, and create indexes over
these columns [Datta et al., 2012,Datta et al., 1998].

• Column-speci c Data compression, like run-length encoding, can be directly
performed [Abadi et al., 2008].

• Multiple values from a column can be passed as a block from one operator
to the next. If existing attributes have xed-length values, then they can be
iterated as an array [Abadi et al., 2008].

• For some speci c datasets with a high dimension number, vertical partitioning
is more reasonable in terms of time and space costs [Li et al., 2004].

4.4.2 Horizontal partitioning of a multi-dimensional dataset

The multi-dimensional dataset usually has a large volume. But the calculations
over them are expected to run rapidly. As one of the OLAP query optimizing ap-
proaches, data partitioning makes it possible to process queries in a parallel and
distributed fashion. Also, it can reduce irrelevant data accesses, improve the scala-
bility, and ease data management. In this subsection, we summarize the applications
of horizontal partitioning in OLAP query processing. By horizontal partitioning,
we refer to the partitioning method that conserves the record integrality. Depending
on the data-storage methods, OLAP tools can be categorized into Relational OLAP
(ROLAP) and Multi-dimensional OLAP (MOLAP). In ROLAP, data is stored in the
form of relations under star-schema. In MOLAP, data is stored in the form of cubes
or multi-dimensional arrays, i.e., data cubes. We specify the data partitioning ap-
proaches designed for these two different data models separately.

4.4.2.1 Partitioning multi-dimensional array data

In a MOLAP, a data cube is represented as a multi-dimensional space, stored in
optimized multi-dimensional array storage. In the multi-dimensional space, each di-
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mension is represented as an axis; the distinct values of each dimension are various
coordinate values on the corresponding axis. The measures are loaded from each
record in the original dataset into the cells of this multi-dimensional space, each cell
being indexed by the unique values of each attribute of the original record. Partition-
ing a data cube into dimensions and measures is a design choice [Sanjay and Alok,
1997].

Partitioning data cubes should support equal or near-equal distributions of work,
i.e., the various aggregate computations for a set of cuboids, among processors. The
partitioning approach should be dimension-aware, which means that it should pro-
vide some regularity in supporting dimension-oriented operations. Partitioning can
be performed over one or more dimensions [Sanjay and Alok, 1997,Goil and Choud-
hary, 1999]. That is to say, the basic multi-dimensional array is partitioned on one
or more dimensions. The dimensions over which the partitioning is performed are
called partitioning dimensions. After partitioning, each processor holds a smaller
multi-dimensional array, where the number of distinct values held in each partition-
ing dimension is smaller than in the whole multi-dimensional array. Thus, the dis-
tinct values over each partitioning dimension do not overlap among the sub-multi-
dimensional arrays held by each processor. In order to obtain the coarsest partition-
ing grain possible, the dimension(s) having the largest number of distinct values is
chosen to be the partitioning dimension. Assume a dataset with ve attributes (A, B,
C, D, M), among them A, B, C, D are the dimensions (axis) in the multi-dimensional
array, and M is the measure stored in each cell of multi-dimensional array. Da, Db,
Dc and Dd are the number of distinct values in each dimension, respectively, with
Da ≥ Db ≥ Dc ≥ Dd established. This dataset will be partitioned and distributed
over p processors, numbered P0...Pn−1. Thus, a one-dimension partitioning will par-
tition on A, since the A has the biggest number of distinct values7; this partitioning
also builds an order on A, which means if Ax ∈ Pi and Ay ∈ Pj then Ax ≤ Ay for
i < j.

The sub-cubes are constructed over processors with their local sub-dataset (i.e.
partition). In order to guarantee that each partition does not have overlaps over the
partitioning dimension’s distinct values, the sampling-like record distributing meth-
ods, such as hash-based or sort-based method can be used to distribute records to
various processors as described in [Sanjay and Alok, 1997].

Constructing the sub-cube is performed by scanning the sub-dataset attributed to
the local processor. In reference [Sanjay and Alok, 1997], the sub-dataset is scanned
twice. The rst scan obtains the distinct values for each dimension contained in the
sub-dataset, and constructs a hash-table for various dimensions’ distinct values. The
second scan loads the records into the multi-dimensional array. Record loading (the
second scan) works together with probing the hash-tables created earlier. During this
process, the method chosen for partitioning and distributing the original dataset will
affect the performance because the way to access data is slightly different.

7Similarly, a two-dimension partitioning will partition on A, B, since A and B have the largest number of
distinct values.
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Another thing to be noted is that data partitioning determines the amount of data
movement during the aggregates’ computations of the aggregates [Goil and Choud-
hary, 1999]. As the computations of various cuboids involve multiple aggregations
over any combination of dimensions, some cuboid computations are non-local. They
need to partition over a dimension and distribute the partitions once again. Assume
that the multi-dimensional array of the 4-dimensional cube is partitioned over A, B,
then the aggregation of over dimension C from ABC8 to AC involves aggregations
over dimension B, and requires partitioning and distribution over dimension C.

4.4.2.2 Partitioning star-schema data

In ROLAP, data is organized under the star-schema. Horizontal partitioning was
considered an effective method compared to vertical partitioning for star schema
data [Ladjel et al., 1999]. In the centralized Data Warehouse, data is stored in a form
of a star schema. In general, a star schema is composed of multiple dimension tables
and one fact table. Since horizontal partitioning addresses the issue of reducing
irrelevant data access, it is helpful to avoid unnecessary I/O operations. One of the
features of data analysis queries run on Data Warehouse is that they involve multiple
join operations between dimension tables and the fact table. The derived horizontal
partitioning, developed for optimizing relational database operations, can be used to
ef ciently process these join operations.

Partitioning only fact table. This partitioning scheme only partitions the fact ta-
ble, and replicates the dimension tables, since the fact table is generally large.

The reference [Bernardino and Madeira, 2012] proposed a stripping-partitioning
approach. In this approach, the dimension tables are fully replicated over all compute
nodes without being partitioned, as they are relatively small. The fact table is parti-
tioned using round-robin partitioning and each partition is distributed to a compute
node. De ning N as the number of computers, each computer stores 1/N fraction
of the total amount of records. Records of the fact table are striping-partitioned by
N computers, then queries can be executed in parallel. In this way, they guarantee a
near linear speed-up and a signi cant improvement in query response time.

The size of each partition determines the workload attributed to a processor. The
partition size needs to be tuned according to variant queries. A virtual partitioning
method [Akal et al., 2002] was proposed for this purpose. It allows greater

exibility on node allocation for query processing than physical data partitioning. In
this work, the distributed Data Warehouse is composed of several database systems
running independently. Data tables are replicated over all nodes, and each query is
broken into sub-queries by appending range predicates specifying an interval on the
partitioning key. Each database system receives a sub-query and is forced to process
a different subset of data of the same size. However, the boundaries limiting each
subset are very hard to compute, and dispatching the one sub-query per node makes

8The underlined letters represent the dimensions being partitioned and distributed.
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it dif cult to realize dynamic load balancing. A ne-grained virtual partitioning
(FGVP) [Lima et al., 2004b] was proposed to address this issue. FGVP decomposes
the original query into a large number of sub-queries instead of the one query per
database system. It avoids fully scanning tables and suffers less from the individual
database system internal implementation. However, determining appropriate
partition size remains dif cult. Adaptive Virtual Partitioning (AVP) [Lima et al.,
2004a] adopted an experimental approach to obtain the appropriate partitioning
size. An individual database system processes the rst received sub-query with a
given small partitioning size. Each time it starts to process a new sub-query, it
increases the partitioning size. This procedure repeats until the execution time does
not shorten any more, then the best partitioning size is found. Performing AVP
needs some metadata information. Metadata information includes the clustered
index of the relations, the names and cardinalities of relations, the attributes on
which a clustered index is built, and the range of values of such attributes. The
metadata information is stored in a catalog in the work of [Kotowski et al., 2007].

Partitioning dimension tables and the fact table This partitioning scheme works
with star-schema and partitions both dimension tables and the fact table. Often, the
dimension tables are horizontally partitioned into various fragments, and the fact ta-
ble is also horizontally partitioned according to the partitioning results of dimension
tables. This scheme takes into account the star-join requirements.

The number of the fact table partitions depends on the partition number of each
dimension table. Assume N is the number of fact table partitions, p1...pd are the
partition numbers of dimension tables 1...d. If fact table partitioning considers all
partitioning performed on the dimension table, then N = p1 × ...× pd. That means,
along with the augment of p1...pd, N will increase explosively. The work of [Bel-
latreche and Boukhalfa, 2005] focuses on nding the optimal number of fact table
partitions, in order to satisfy two objectives:

• avoid an explosion in the number of the fact table partitions;

• ensure a good performance of OLAP queries.

A generic algorithm is adopted for selecting a horizontal schema in their work.

4.4.3 Vertical partitioning of a multi-dimensional dataset

A multi-dimensional dataset usually contains many attributes. With the entire
record being stored on the disk (in case of horizontal partitioning), the data access
over a multi-dimensional dataset may become inef cient, even though some index-
ing techniques, such as B-tree are applied to it. Vertical partitioning is needed in
some special cases. Imagine the following extreme scenario, where a query scans
only the values of one particular attribute of each record. Clearly, in this case, scan-
ning the required attribute separately is much more ef cient than scanning the whole
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table. From the literature, we summarized two types of datasets, for which vertical
partitioning is very suitable, the high dimension dataset and the read-oriented dataset.

The advantages of vertical partitioning versus horizontal are, rst, it can reduce
the dimensionality, which in turn enhances the data accessibility. Second, it enables
a set of optimization, like index and easy compressing, to be performed, which in
turn improves the ef ciency.

4.4.3.1 Reducing dimensionality by vertical partitioning

In a dataset with high dimensionality, the number of dimensions is very large,
but the number of records is moderate. The queries run over such a dataset only
concern several dimensions. Although OLAP queries involve high-dimension space,
retrieving data from all dimensions occurs very rarely. Based on this, the authors of
reference [Li et al., 2004] employed a vertically partitioning method in their work.
They vertically partitioned the dataset into a set of disjoint low dimensional datasets,
called fragments. For each fragment, the local data cube is calculated. These local
data cubes are on-line assembled when queries concerning multiple fragments need
to be processed. In this work, an inverted index-based indexing technique and data
compressing technique are applied to accelerate the on-line data cube assembly.

4.4.3.2 Facilitating index and compression by vertical partitioning

In a vertically partitioned dataset, data is stored in a column-oriented style. Un-
like in row-oriented storage, where records are stored one after another, in column-
oriented storage, attribute values belonging to the same column are stored contigu-
ously, compressed, and densely packed [Abadi et al., 2009]. OLAP applications are
generally read-intensive, where the most common operation is to read data from a
disk; the update operation also occurs, but not frequently. For such read-intensive
applications, the most important performance-affecting factor is the I/O ef ciency.

For a multi-dimensional dataset, the traditional indexing techniques, such as B-
tree indexing, are not appropriate. Simply scanning the vertically partitioned data
tables is often more ef cient than using B-tree based indexes to answer ad hoc range
queries [Stockinger et al., 2002]. Using the traditional indexing techniques to process
queries, involving only a subset of attributes, suffers from the high dimensionality of
the dataset, since the size of the index increases super-linearly with the augmenting
of the dimension number. With the vertical partitioning method, the high dimension-
ality issue is resolved. However, in view of the new data storage structure, not all
of the traditional indexing techniques are appropriate. Bitmap index data structure
is mostly used for answering read-intensive OLAP queries [Chaudhuri and Dayal,
1997], but not optimized for insert, delete, or update operations. Given this charac-
teristic, Bitmap is considered to be the most suitable index for working with vertical
partitioned data. For large datasets, a Bitmap index can have millions to billions
of bits. It is imperative to compress the bitmap index. The authors Stockinger et
al. [Stockinger et al., 2002] have compared some of the compression schemes such
as Byte-aligned Bitmap Code (BBC), Word-Aligned Hybrid run-length code (WAH),
and Word-aligned Bitmap Code (WBC). They found that WAH is the most ef cient
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in answering queries because it is much more CPU-ef cient.
Compared to row-oriented storage, column-oriented storage presents a number of

opportunities to improve performance by compression techniques. In such column-
oriented storage, compression schemes encoding multiple values at one time are nat-
ural. For example, many popular modern compression schemes, such as Run-length
encoding, make use of the similarity of adjacent data to compress. However, in a
row-oriented storage system, such schemes do not work well, because an attribute is
stored as a part of an entire record. Compression techniques reduce the size of data,
thus it improves the I/O performance in the following ways [Abadi et al., 2006]:

• In a compressed format, data is stored more closely, thus the seek time is
reduced;

• The transfer time is also reduced because there is less data to be transferred;

• The buffer hit rate is increased because a larger fraction of retrieved data ts
in the buffer pool.

Especially, compression ratios are usually higher in column-oriented storage because
consecutive values of a same column are often quite similar to each other.

4.5 Data replication

The data replication technique is usually used together with data partitioning. Data
replication is used to increase the liability. Multiple identical copies of data are
stored over different machines. If the machine holding the primary copy is down,
then the data can still be accessed on machines holding the copies. In general, data
replication and distribution are not necessarily used with data partitioning. These
technologies can be used alone. In the work of [Lima et al., 2004a], the author pro-
posed an adaptive virtual partitioning for OLAP query processing based on shared-
nothing architecture. In their approach, the dataset is replicated over all the nodes
in the shared-nothing cluster. The virtual partitioning does not physically partition
the dataset, instead, it creates a set of sub-queries including different predicates. By
applying these predicates, the original dataset is virtually partitioned, the original
query is run only on the data items belonging to the partition.

4.6 Query processing parallelism

Parallelizing query processing over partitioned datasets using multiple processors
can signi cantly reduce the response time. The query processing parallelism has
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shown a good speed-up and scale-up for OLTP query and it is worthwhile investi-
gating parallelism research for processing OLAP query. In the sequential database
systems, such as the relational database system, queries are often parsed into graphs
during the processing. These graphs are called query execution plans or query plans,
which are composed of various operators.

A lot of parallel query processing work has been done on parallel database ma-
chines, such as Gamma [DeWitt et al., 1986], Bubba [Boral et al., 1990], Vol-
cano [Graefe, 1990] etc. The main contributions of their work were parallelization
of data manipulation and the design of the speci c hardware. Even though parallel
database machines were not really put into use, they led database technology in the
right direction, and its research work became the basis of parallel query processing
techniques. The general description of query processing parallelization is as follows:
a query is transformed into N partial queries that are executed in an independent way
on each of N computers. Generally, we can distribute the same query to all comput-
ers, but some types of queries require rewriting.

4.6.1 Inter- and intra-operators

There are several forms of parallelism that are of interest to designers and imple-
menters of query processing systems [Graefe, 1993]. Inter-query parallelism means
multiple queries are processed concurrently. For example, several queries contained
in a transaction are executed concurrently in a database management system. For this
form of parallelism, resource contention is an issue. Based on the algebraic operators
parallelization, the parallelism forms can be further re ned.

Inter-operator parallelism. Inter-operator parallelism means parallel execution of
different operators in a single query. It has two sub-forms, i.e. horizontal inter par-
allelism and vertical inter parallelism. Horizontal inter parallelism means splitting
a tree of query execution plan into several sub-trees, each sub-tree is executed by a
processor individually. It can easily be implemented by inserting a special type of
operator, exchange, into the query execution plan, in order to parallelize the query
processing. We will talk about the exchange operator in the following content. Ver-
tical inter-parallelism is also called pipeline, in which operators are organized into
a series of producers and customers. Parallelism is gained by processing records as
a stream. Records being processed by producers are sent to customers. The authors
of reference [DeWitt and Gray, 1992] argued that, in a relational database system,
the bene t of pipeline parallelism is limited. The main reasons were: 1) very long
pipelines are rare in query processing based on SQL operators; 2) some SQL opera-
tors do not emit the rst item of output until they have consumed all items of input,
such as aggregate and sort operators; 3) there is often one operator which takes much
longer than other operators, which makes the speed-up by pipeline parallelism very
limited.
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Intra-operator parallelism. Another form of parallelism is Intra-operator paral-
lelism, which means executing an operator using several concurrent processes run-
ning on different processors. It is based on data partitioning. The precondition of in-
tra operator parallelism is that queries should focus on sets. Otherwise, if data being
queried represents a sequence, for example, time sequence in a scienti c database,
then such a form of parallelism could not be directly used, and some additional syn-
chronization should be processed at the result-merging phase.

4.6.2 Exchange operator

The exchange operator was proposed in the Volcano system [Graefe, 1990]. It is
a parallel operator inserted into a sequential query execution plan so as to parallelize
the query processing. It is similar to the operators in the system, like open, next,
close; other operators are not affected by the presence of exchange in the query exe-
cution plan. It does not manipulate data. On the logical level, exchange is “no-op,”
that is, has no place in logical query algebra such as the relational algebra. On the
physical level, it provides the “control” functions that the other operators do not of-
fer, such as, processes management, data redistribution, and ow control. Exchange
only provides “control” parallelisms, but does not determine or presuppose the poli-
cies applied for using these mechanisms, such as degree of parallelism, partitioning
functions, or attributing processes to processors. In Volcano, the optimizer or user
determines these policies. Figure 4.1 shows a parallel query execution plan with
exchange operators.

FIGURE 4.1: Parallel query execution plan with exchange operators.
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4.6.3 SQL operator parallelization

Query running over the partitioned dataset can achieve parallelism, which is also
called partitioned parallelism. The algorithms used to implement various operators
in parallel are different from those used in a sequential query execution plan imple-
mentations. In the following content, we will summarize the parallelization issues
for different operators.

Various SQL operators parallelization algorithms have been introduced in the lit-
erature [DeWitt and Gray, 1992, Graefe, 1993, Kossmann, 2000], such as, parallel
scan, parallel selection and update, parallel sorting, parallel aggregation and dupli-
cate removal, parallel join and binary matching. Apart from these traditionally used
SQL operators, some operators speci cally designed for parallel query processing,
such as merge and split, are also introduced. We summarize these algorithms in this
section.

Parallel scan. Scan is a basic operator used in query processing. It involves a
large number of disk I/Os, which is also the most expensive operation. Therefore, it
is signi cant to parallelize scan operator in order to share I/O cost. After partitioning
data, each parallel scan operator performs over one partition. The output of paral-
lel scans working over partitions of a same relation are then processed by a merge
operator, which merges multiple scanning outputs into one output and sends it to the
application or to the next operator in the query execution plan.

Merge and split. A merge operator is used to collect data. A merge operator is
equipped with several input ports and one output port. The input data streams are
received at the input ports of a merge operator, and the merging result exits from the
output port. If multi-stage parallel processing is required, then a data stream needs
to be split into individual sub-streams.

A split operator serves this purpose. Split is used to partition or duplicate a record
stream into multiple ones. For example, a record’s various attributes are sent to dif-
ferent destination processes through the attributed split operator. A split operator
partitions the input record stream by applying round-robin, hash partitioning meth-
ods, or any other partitioning methods. The split allows the auto parallelism of a
newly added system operator, and it supports various kinds of parallelism.

Parallel selection and update. Parallel selection operators partition the workload
of selection over several I/O devices, each being composed of one single disk or an
array of disks. Selection operators concurrently perform over all required data parti-
tions, and retrieve matching records. If the partitioning attribute is also the selection
attribute, then all disks holding partitions will not contain the selection results. Thus,
the number of processes and that of activated disks are limited. Local indexing can
still result in high ef ciency for a parallel selection operator.

Data movement could be caused by an update operator updating the value of the
partitioning attribute of one record. The modi ed data might need to be moved to
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a new disk or node in order to maintain the partitioning consistency. Since moving
data is an expensive operation, it is more practical to choose an immutable attribute
such as the partitioning attribute in cases where the original dataset contains dynamic
data.

Parallel sorting. Sorting is one of the most expensive operators in database sys-
tems. A lot of research has addressed parallel sorting. Without loss of generality,
assume a parallel sorting operator with multiple inputs and multiple outputs, and
further, assume records are aligned in a random order on the sorting attribute in each
input, and the output has to be range-partitioned with records being sorted within
each range. The algorithms implementing parallel sorting generally include two
phases, the local sorting phase and the data exchange phase. In the local sorting
phase, records are sorted within multiple processes. In the data exchange phase,
records are sent to a set of processes. The target process, to which a record is sent,
will produce an output partition with the range of sorting attribute value comprising
the record’s sorting attribute value. In other words, the sent records should con-
tribute to the output produced by the target process. In practice, we can rst run
data exchange, then local sorting, or, run local sorting rst, then data exchange. If
data exchange runs rst, then the knowledge of quantile should be available in order
to ensure load balancing. If local sorting runs rst, records are sent, at the end of
local sorting, to the right receiving processes, according to the range that each sent
record’s sorting attribute value belongs to.

One of the possible problems during this procedure is deadlock. The refer-
ence [Graefe, 1993] summarized the ve necessary conditions of deadlock, cited
as follows, i.e. if all these conditions establish, then deadlock will occur. Assuming
that a couple of parallel sort operators play with other operators in a relationship of
producers and consumers, then the necessary conditions of deadlock are:

• multiple consumers feed multiple producers;

• each producer produces a sorted stream and each consumer merges multiple
sorted streams;

• some key-based partitioning rule, i.e., hash partitioning, is used other than
range partitioning;

• ow control is enabled;

• the data distribution is particularly unfortunate.

Deadlock can be avoided by guaranteeing any one of the above conditions does not
establish. Among these, the second condition—each producer produces a sorted
stream and each consumer merges multiple sorted streams—is most easily avoided.
For instance, if the sending process (producer) does not perform sorting, or each
individual input stream of receiving process (consumer) is not sorted, then deadlock
can be avoided. That is, moving the sorting operation from producer operator to
consumer operator can resolve the deadlock problem.
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Deadlocks can also occur during the execution of a sort-merge-join, and they can
be similarly avoided by moving the sorting operation from the producer operator
to the consumer operator. However, this happens when it is not possible to move
the sorting operation from producer (sort) to consumer (merge-join), for example,
reading data from a B-tree index sorts the records when they are retrieved from the
disk. In such a case, it is necessary to nd alternative methods that do not require re-
partitioning and merging of sorted data between the producers and consumers. The

rst alternative method is moving the consumers’ operations into the producers. As-
sume the original data is sorted and partitioned with the range- or hash-partitioning
method, with the partitioning attribute being exactly the same as the attribute consid-
ered by the operations of consumer process, e.g., join attribute in case of consumer
operator being merge-join, then the process boundaries and data exchange can be
entirely removed from the consumer. This means producer operator, B-tree scan and
consumer operator, merge-join, are all performed in a same group of processes. The
second method utilizes fragment-and-replicate to perform a join operation. Assume
that records of input stream are sorted over a relevant attribute within each partition,
but partitioned either round-robin or over a different attribute. For such a data dis-
tribution, fragment-and-replicate strategy is applicable. During the join operation
with fragment-and-replicate strategy, one input of join is partitioned over multiple
processes and another input of join is replicated across these processes9. The join
operations are running within the same processes as those producing sorted output.
Thus, the sorting and join operations are running in one operator, and deadlocks can
be avoided.

Parallel aggregation and duplicate removal. There are three commonly used
methods for parallelizing aggregation and duplicate removal. The Centralized Two
Phase method rst does aggregations on each of the multiprocessors over the local
partition, then the partial results are sent to a centralized coordinator node, which
merges these partial results and generates the nal result. The Two Phase method
parallelizes the processing of the second phase of the Centralized Two Phase method.
The third method is called Re-partitioning. It rst redistributes the relation on the
group by attributes, and then does the aggregation and generates the nal results in
parallel over each node. Shatdal et al. [Shatdal and Naughton, 1995] argued that
these three methods do not work well for all queries. Both Two Phase methods only
work well when the number of result records is small, whereas the Re-partitioning
method works well only when the number of distinct values of group-by attributes
is large. They proposed a hybrid method that changes/decides the method according
to the workload and the number of the distinct values of group-by attributes being
computed. A bucket over ow optimization of Two Phase methods was discussed
in [Graefe, 1993]. For hash-based aggregation, a special technique which improves

9In typical fragment-and-replicate join processing, the larger input is partitioned, and the smaller input is
replicated.
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performance is that they do not create the over ow le10, and the records can be
moved directly to the nal nodes, because resending records to other nodes is faster
than writing records on to a disk. The disk I/O operations are caused when the ag-
gregate output is too large to t into memory.

Parallel join. Join operators include different kinds of join operations, which are
performed in different approaches. For instance, semi-join, outer-join, non-equi-join
etc. are all join operators. Unlike the operators mentioned previously, join operators
are binary operators, which involve two inputs.

Executing distributed join operators in parallel indispensably involves send and
receive operations. These operations are based on protocols like TCP/IP or UDP.
Row blocking is a commonly used technique for shipping records to reduce cost.
Record shipping is done in a block-wise way, i.e. instead of being shipped one by
one, records are shipped block by block. This method compensates the arrival of
data up to a certain point [Kossmann, 2000].

Parallel joins over horizontally partitioned data can be achieved in multiple ways.
Assuming relation R is partitioned into R1 and R2: R = R1

⋃
R2, then the join

between relations R and S can be computed by (R1

⋃
R2) � S or (R1

⋃
S) �

(R2

⋃
S). If R is partitioned into three partitions, and S is replicated, then more

methods can be adopted. For instance, the join can be calculated by ((R1

⋃
R2) �

S)
⋃
(R3 � S)), with one replica of S placed near R1 and R2, and another replica

of B placed near R3. If Ri � Sj is estimated to be, then this partial calculation can
be removed to reduce the overhead.

Sort-merge-join is a conventional method for computing joins. Assume R and S
are still two input relations for join. In sort-merge-join method, both of the input
relations are rst sorted over the join attribute. Then these two sorted intermediate
relations are compared, and the matching records are output. Hash-join is an alter-
native to sort-merge-join and Hash-join breaks a join into several smaller joins. The
two input relations R and S are hash-partitioned on the join attributes. One partition
of relation R is hash into memory, the related partition of relation S is scanned. Each
of the records in this S partition is compared with the partition of R held in memory.
Once a record is matched, it is output. Double-pipelined-hash-join improved the
conventional hash-join. It is a symmetric, incremental join. Double-pipelined-hash-
join creates two in-memory hash-tables, for each one of the input relations. Initially,
both hash-tables are empty. The records of R and S are processed one by one. To
process one record of R, the hash-table of S is probed; if the record is matched
records, then it is outputed immediately. Simultaneously, the record is inserted into
the hash-table of R for matching the unprocessed records of S. Thus, at any point
in time, all the encountered records are joined. Double-pipelined-hash-join has two
advantages; rst, it allows delivery of the rst results of a query as early as possible.
Second, it makes it possible to fully exploit pipelined parallelism, and in turn reduce
the overall execution time.

10Over ow le means the common over owing zone of hash table.
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Symmetric partitioning and fragment-and-replicate are two basic techniques for
parallelizing binary operators. In symmetric partitioning, both inputs are partitioned
over the join attribute, and then the operations will be run on every node. This method
is used in Gamma [DeWitt et al., 1986]. In the fragment-and-replicate method, one
of the two inputs is partitioned; the other input is broadcast to all other nodes. In
general, the larger input is partitioned in order not to move it. This method was
realized in the early database systems, because the communication cost overshad-
owed the computation cost. Sending small input to a small number of nodes costs
less than partitioning both larger input and small input. To be noted, fragment-and-
replicate cannot work correctly for semi-join, and other binary operators, like, dif-
ference union, because when a record is replicated, it will contribute multiple times
to the output.

Semi-join is used to process join between relations placed on different nodes.
Assume two relations R and S are placed on nodes r and s, respectively. Semi-
join sends the needed columns for join of relation R from node r to s, then nds
the records qualifying the join from relation S and sends these records back to
r. The join operation is executed on node r. Semi-join can be expressed as:
R � S = R � (S�π (R)). Redundant-semi-join is a technique for reducing network
traf c used in distributed databases for join processing. This method is used in dis-
tributed memory parallel systems. Assume two relations R and S having a common
attribute A, are each stored on nodes r and s separately. Redundant-semi-join sends
the duplicate-free projection on A to s, executes a semi-join to decide which records
of S will contribute to the join result, and then ships these records to r. Based on the
law of relational algebra R � S = R � (S � R), there is no need for shipping S,
which reduces communication overhead, at the cost of adding the overhead of pro-
jecting, shipping the column A of R and executing the semi-join. Such a reduction
can be applied on R or S, or both. The operations included during this process, such
as projection, duplicate removal, semi-join and nal join can be parallelized not only
on nodes s and r, but also on more than two nodes.

Symmetric fragment-and-replicate is proposed by Stamos et al. [Stamos and
Young, 1993] which is applicable for non-equi-joins and N-way-join. For paral-
lelizing a non-equi-join, processors are organized into rows and columns. One input
relation is partitioned over rows, and its partitions are replicated over each processor
row. The other input relation is partitioned over columns, and its partitions are repli-
cated over each processor column. A record of one input relation only matches with
one record from the other input relation. The global join result is the concatenation
of all partial results. This method improves the fragment-and-replicate method by
reducing the communication cost.

For joins in a parallel Data Warehouse environment, the parallel star-join is dis-
cussed by Datta et al. in [Datta et al., 1998]. This parallel join processing is based
on a particular data structure, Data Index11, proposed in the same work. Recall that
Basic DataIndex (BDI) is simply a vertical partition of the fact table, which may in-

11DataIndex is discussed in Section 4.3
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clude more than one column and the Join DataIndex (JDI) is designed to ef ciently
process join operations between the fact table and the dimension table. JDI is an
extension of BDI. JDI is composed of BDI and a list of RecordIDs indicating the
matching records in the corresponding dimension table. Assume that F represents
the fact table, and D represents the set of dimension tables, then | D |= d, which
means that there are d dimension tables. Let G represent a set of processor groups,
and | G |= d+1. Dimension table Di and the fact table partition JDI corresponding
to the key value of Di are distributed to the processor group i. And the fact table par-
tition BDI after containing measures is distributed to processor group d + 1. Based
on the above data distribution, the parallel star-join processing only involves rowsets
and projection columns.

In [Akinde et al., 2003] a more complex join operator, General Multiple Dimen-
sion Join (GMDJ), is discussed in a distributed Data Warehouse environment. GMDJ
is a complex OLAP operator composed of relational algebraic operators and other
GMDJ operators. These GMDJ operator-composed queries need multi-round pro-
cessing. GMDJ operator clearly separates group-by de nition and aggregate de -
nition, which allows to express various kinds of OLAP queries. An OLAP query
expressed in GMDJ expressions is translated into a multi-rounded query plan. Dur-
ing each round, each site of distributed Data Warehouse executes calculations and
communicates its results to the coordinator; the coordinator synchronizes the partial
results into a global result, then transfers the global result to distributed Data Ware-
house sites. When a distributed Data Warehouse site receives an OLAP query, it
transforms the OLAP query into GMDJ operators, which are then optimized using
distributed computation. Taking the ef ciency into account, the synchronization at
the end of each round is started when the faster sites’ partial results arrive on the
coordinator, instead of waiting for all partial results arrivals before starting the syn-
chronization. Although this work described how to generate a distributed query plan,
it did not support on-line aggregation.

4.6.3.1 Issues of query parallelism

During the parallelization of query processing, some issues will appear, such as
data skew and load balance. Pipeline parallelism does not easily lend itself to load
balancing, since each processor in the pipeline is loaded proportionally to the amount
of data it has to process. This amount of data cannot be predicated very well. For
partitioning-based parallelism, load balancing is optimal, if the partitions are all of
equal size. However, load balancing can be hard to achieve in the case of data skew.
Range partitioning risks data skew, where all the data is placed in one partition, and
all the calculations. However, hashing and round-robin based partitioning suffer less
from data skew.
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4.7 Concluding remarks

Recently, some new technologies have been adopted in the multi-dimensional data
analysis application. These new technologies include: in-memory query processing,
search engine technologies, and enhanced hardware. Commercial multi-dimensional
data analysis products use these new technologies and commonly run on a couple of
blade servers. They do not adopt the traditional pre-calculation method, i.e. storing
pre-calculated results into materialized views, to accelerate query processing. On
the contrary, they compress data to t into the memory. Before a query is answered,
all the data needed to answer it is copied to memory. All the query processing is
in-memory.

Aside from in-memory query processing, commercial multi-dimensional data
analysis products adopted the search engine technology to accelerate the query pro-
cessing. They used a metamodel in order to bridge the gap between the structured
data cube and search engine technology, which was originally developed to work
with unstructured data. In this metamodel, the data originally stored under star-
schema is represented as a join graph expressing the joins between fact table and
required dimension tables.

In this chapter, we rst described the features of multi-dimensional data analysis
queries and three distributed system architectures, including shared-memory, shared-
disk, and shared-nothing. Second, we gave a survey of existing work on accelerating
data analytical query processing. Three approaches were discussed, pre-computing,
data indexing, and data partitioning. Pre-computing is an approach to bartering stor-
age space for computing time. The aggregates of all possible dimension combi-
nations are calculated and stored to rapidly answer the forthcoming queries. We
discussed some related issues of pre-computing, including data cube construction,
sparse cube, query result re-usability, and data compressing. For indexing technolo-
gies, we discussed several indexes appearing in the literature, including B-tree/B+-
tree index, projection index, Bitmap index, Bit-Sliced index, join index, inverted in-
dex etc. A special type of index used in distributed architecture was also presented.
For data partitioning technology, we introduced two basic data partitioning meth-
ods, horizontal partitioning and vertical partitioning, as well as their advantages and
disadvantages. Then we presented the application of partitioning methods on the
multi-dimensional dataset. After that, the parallelism of query processing was de-
scribed. We focused on parallelization of various operators, including scan, merge,
split, selection, update, sorting, aggregation, duplicate removal, and join. At the end
of this chapter, we introduced some new developments in multi-dimensional data
analysis.



Chapter 5

Data intensive applications with
MapReduce

5.1 Introduction

Along with the development of hardware and software, more and more data is
generated at a rate much faster than ever. Although data storage is inexpensive, and
the issues of storing large volumes of data can be resolved, processing large volumes
of data is becoming a challenge for data analysis software. The feasible approach
handling large-scale data processing is to divide and conquer. People look for solu-
tions based on a parallel model, for instance, the parallel database, which is based
on the shared-nothing distributed architectures. Relations are partitioned into pieces
of data, and the computations of one relational algebra operator to be proceeded in
parallel on each piece of data [DeWitt and Gray, 1992]. The traditional parallel at-
tempts in data intensive processing, like parallel database, were suitable when data
scale was moderate. However, parallel database does not scale well. MapReduce is
a new parallel programming model, which turns a new page in data parallelism his-
tory. The MapReduce model is a parallel data ow system that works through data
partitioning across machines, each machine independently running the single-node
logic [Hellerstein, 2012]. MapReduce initially aims at supporting information pre-
processing over a large number of web pages. MapReduce can handle large datasets
with the guarantee of scalability, load balancing, and fault tolerance, and MapRe-
duce is applicable to a wide range of problems. Depending on different problems,
the detailed implementations are varied and complex. The following are some of the
possible problems to be addressed:

• How to decompose a problem into multiple sub-problems

• How to ensure that each sub-task obtain the data it needs

• How to cope with intermediate output so as to bene t from MapReduce’s ad-
vantages without losing ef ciency

• How to merge the sub-results into a nal results

In this chapter, we will focus on the MapReduce model. First, we describe the
logical composition of the MapReduce model as well as its extended model. The
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issues related to this model, such as MapReduce’s implementation frameworks, cost
analysis, etc., will also be addressed. Second, we will talk about the distributed
data access of MapReduce. A general presentation on data management applications
in the cloud is given before the discussion about large-scale data analysis based on
MapReduce.

5.2 MapReduce: New parallel computing model in cloud
computing

In parallel distributed computing, the most troublesome part of programming is
handling the system-level issues, such as communication, error handling, synchro-
nization etc. Some parallel computing models, such as MPI, OpenMP, RPC, RMI
etc., are proposed to facilitate the parallel programming. These models provide a
high-level of abstraction and hide the system-level issues, like communication and
synchronization issues.

Message Passing Interface (MPI) de nes a two-sided message-passing library (be-
tween sender and receiver). Otherwise, one-sided communication is also possible.
Note that in MPI, a send operation does not necessarily have an explicit reception.
Remote Procedure Call (RPC) and Remote Method Invocation (RMI) are based on
the one-side communication. Open Multi-Processing (OpenMP) is designed for
shared memory parallelism. It automatically parallelizes programs, by adding the
synchronization and communication controls during compiling time. Although these
models and their implementations have undertaken much system-level work, they
are rather designed for realizing processor-intensive applications. When using these
models for large-scale data processing, programmers still need to handle low-level
details.

MapReduce is a data-driven parallel computing model proposed by Google. The
rst paper on the MapReduce model [Dean and Ghemawat, 2004] described one

possible implementation of this model based on large clusters of commodity ma-
chines with local storage. The paper [Lämmel, 2007] gave a rigorous description of
this model, including its advantages, in Google’s domain-speci c language, Sawzall.
One of the most signi cant advantages is that it provides an abstraction which hides
the system-level details from programmers. Having this high-level abstraction, de-
velopers do not need to be distracted by solving how computations are carried out
and nding the input data that the computations need. Instead, they can focus on the
processing of the computations.

5.2.1 Dataflow model

MapReduce is a parallel programming model proposed by Google. It aims at sup-
porting distributed computation on large datasets by using a large number of comput-
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ers with scalability and fault tolerance guarantees. During the map phase, the master
node takes the input, and divides it into sub-problems, then distributes them to the
worker nodes. Each worker node solves a sub-problem and sends the intermediate
results ready to be processed by reducer. During the reduce phase, intermediate re-
sults are processed by reduce function on different worker nodes, and the nal results
are generated.

This type of computation is different from parallel computing with shared mem-
ory, which emphasizes that computations occur concurrently. In parallel comput-
ing with shared memory, the parallel tasks have close relationships with each other.
Computations supported by MapReduce are suitable for parallel computing with
distributed memory. Indeed, MapReduce executes the tasks on a large number of
distributed computers or nodes. However, there is a difference between the com-
putations supported by MapReduce and the traditional parallel computing with dis-
tributed memory. For the latter, the tasks are independent, which means that the error
or loss of results from one task does not affect the other tasks’ results, whereas in
MapReduce, tasks are only relatively independent and loss or error do matter. For
instance, the mapper tasks are completely independent of each other, but the reducer
tasks cannot start until all mapper tasks are nished, i.e. reducer tasks’ start-up is
restricted. The loss of task results or failed execution of tasks also produce a wrong

nal result. With MapReduce, complex issues such as fault-tolerance, data distribu-
tion and load balancing are all hidden from the users. MapReduce can handle them
automatically. In this way, MapReduce programming model simpli es parallel pro-
gramming. This simplicity is retained in all frameworks that implement MapReduce
model. By using these frameworks, the users only have to de ne two functions, map
and reduce, according to their applications.

Fundamentals of the MapReduce model. The idea of MapReduce was inspired
by high-order function and functional programming. Map and reduce are two prim-
itives in functional programming languages, such as Lisp, Haskell, etc. A map func-
tion processes a fragment of a key-value pairs list to generate a list of intermediate
key-value pairs. A reduce function merges all intermediate values associated with
a same key, and produces a list of key-value pairs as output. Refer to the refer-
ence [Dean and Ghemawat, 2004] for a more formal description. The syntax of the
MapReduce model is the following:
map(key1,value1)→ list(key2,value2)

reduce(key2,list(value2)→ list(key2,value3)

In the above expressions, the input data of the map function is a large set of
(key1,value1) pairs. Each key-value pair is processed by the map function
without depending on other peer key-value pairs. The map function produces an-
other pair of key-values, noted as (key2,value2), where, the key (denoted as
key2) is not the original key as in the input argument (denoted as key1). The out-
put of the map phase is processed before entering the reduce phase, that is, key-value
pairs (key2,value2) are grouped into lists of (key2,value2), each group
having the same value of key2. These lists of (key2,value2) are taken as input
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FIGURE 5.1: Logical view of the MapReduce model.

data by the reduce function, and the reduce function calculates the aggregate value
for each key2 value. Figure 5.1 shows the logical view of MapReduce.

The formalization given in the rst article of MapReduce [Dean and Ghemawat,
2004] was simpli ed. It omitted the detailed speci cation for the intermediate results
processing part in order to hide the complexities from the readers. However, this
might cause some confusion. The author of reference [Lämmel, 2007] took a closer
look at Google’s MapReduce programming model and gave a clearer explanation
for the underlying concepts of the original MapReduce. The author formalized the
MapReduce model with the functional programming language, Haskell. The author
also analyzed the parallel opportunities existing in MapReduce model and its distri-
bution strategy. The parallelization may exist in the processing of mapper’s input,
the grouping of the intermediate output, the reduction processing over groups and
the reduction processing inside each group during the reduce phase. In the strategy
of the MapReduce model, network bandwidth is considered as the scarce resource.
This strategy combines parallelization and large dataset distributed storage to avoid
saturating the network bandwidth.

Note that the keys used in the map phase and the reduce phase can be different,
i.e. developers are free to decide which part of data will be keys in these two phases.
That means this data form of key-value pair is very exible, which is very different
from the intuitive feel. As keys are user-de nable, one can ignore the limitation
of key-value. Thus, a whole MapReduce procedure can be informally described as
follows:

• Read a lot of data;

• Map: extract useful information from each data item;

• Shuf e and sort;
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• Reduce: aggregate, summarize, lter, or transform;

• Write the results.

Extended MapCombineReduce model. The MapCombineReduce model is an
extension of the MapReduce model. In this model, an optional component, namely
the combiner, is added to the basic MapReduce model. This combiner component
is proposed and adopted in the Hadoop project [Hadoop, 2012a]. The intermediate
output key-value pairs are buffered and periodically ushed onto disk. At the end
of the processing procedure of the mapper, the intermediate key-value pairs are al-
ready available in memory. However, these key-value pairs are not written into a
single le. These key-value pairs are split into R buckets based on the key of each
pair. For the sake of ef ciency, we sometimes need to execute a reduce-type oper-
ation within each worker node. Whenever a reduce function is both associative and
commutative, it is possible to “pre-reduce” each bucket without affecting the nal
result of the job. Such a “pre-reduce” function is referred to as a combiner. The
optional combiner component collects the key-value pairs from the memory. There-
fore, the key-value pairs produced by the mappers are processed by the combiner
instead of being written into the output immediately. In this way, the intermediate
output amount is reduced. This makes sense when the bandwidth is relatively small
and the volume of data transferred over the network is large. Figure 5.2 shows the
logical view of the MapCombineReduce model.

5.2.2 Two frameworks: GridGain versus Hadoop

Hadoop [Hadoop, 2012a] and GridGain [GridGain, 2012] are two different open-
source implementations of MapReduce. Hadoop is designed for processing appli-
cations. The response time is relatively long, for instance, from several minutes to
several hours. One example of such an application is the nite element method cal-
culated over a very large mesh. The application consists of several steps, each step
using the data generated by the previous steps. The processing of Hadoop includes
transmitting the input data to the computing nodes. This transfer must be extremely
fast to ful ll the users’ needs. Hadoop is an excellent MapReduce supporting tool
and a Hadoop cluster gives high throughput computing. However, it has a high la-
tency since Hadoop is bound with the Hadoop distributed le system (HDFS). The
Hadoop’s MapReduce component operates on the data or les stored on HDFS, and
these operations take a long time to be performed. For this reason, Hadoop cannot
provide a low latency.

However, what we are trying to perform in parallel is a great number of queries
on one large dataset. The dataset involved is not modi ed, and the query processing
should be interactive. In fact, low latency is essential for interactive applications. In
order to be compatible with the application’s interactive requirements, the response
time is strictly limited, for instance, within ve seconds. In contrast to Hadoop,
GridGain is not bound with a le system and offers low latency. It is a MapReduce
computational tool. GridGain splits the computing task into small jobs and executes
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FIGURE 5.2: Logical view of a MapCombineReduce model.

them on the grid in parallel. During the task execution, GridGain deals with the low-
level issues, such as nodes discovery, communication, jobs collision resolution, load
balancing, etc. When compared with Hadoop, GridGain is more exible. Instead of
accessing data stored on a distributed le system, GridGain can process data stored
in any le system or database. In addition, GridGain has some other advantages. For
instance, it does not need application deployment and can be easily integrated with
other data grid products. In particular, it allows programmers to write their programs
in pure Java language.

5.2.3 Communication cost analysis

In parallel programming, a computation is partitioned into several tasks, which
are allocated to different computing nodes. The communication cost issues must
be considered, since the data transmission between the computing nodes represents
a non-negligible part. The communication cost is directly linked with the degree
of parallelism. If the tasks are partitioned with a high degree of parallelism, the
communication cost will be large. On the other hand, if the degree of parallelism is
small, the communication cost will be limited.

In the MapReduce parallel model, the communication cost exists in several phases.
For the basic MapReduce model, without a combiner component, the communication
cost consists of three distinct phases. The rst phase is the launching phase, during
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which all the tasks are sent to the mappers. The second phase, located between the
mappers and reducers, consists in sending the output from mappers to reducers. The
third phase is the nal phase, which produces the results, and where the outputs of
the reducers are sent back. For the extended MapCombineReduce model, the com-
munication consists of four phases. The rst phase is still the launching phase. The
second phase, located between the mappers and combiners, consists of sending the
intermediate results from the mappers to combiners located on the same node. The
third phase, located between the combiner and the reducer, consists of sending the
output of the combiners to reducers. The fourth phase is the nal phase, which pro-
duces the results. The size of the output data exchanged between the components
strongly impacts the communication cost. In reference [Hasan, 1996], the author de-
scribed an analysis of the communication cost in a parallel environment, depending
on the amount of data exchanged between the processes. Based on their work we an-
alyzed the case of MapReduce, and we summarized the following factors in uencing
the communication cost.

(i) The rst one is the amount of intermediate data to be transferred, from the map-
pers to the reducers (case without a combiner component) or from the com-
biners to the reducers (case of a combiner component).

(ii) The second factor is the physical locations of the mappers, the combiners and
the reducers. If two communicating components are on the same node, the
communication cost is low; otherwise the cost is high. If two communicating
components are located on two geographically distant nodes, the communica-
tion cost could be extremely high.

(iii) The third factor to be considered is the number of mappers, combiners, and
reducers respectively. Usually, the user de nes the number of mappers ac-
cording to the scale of the problem to be solved and the computing capacity
of the hardware. The number of combiners is usually equal to the number of
nodes participating in the calculation, collecting local intermediate results of a
node. Whether or not the number of reducers can be user-de nable depends on
the design of the implemented MapReduce framework. For example Hadoop
allows the user to specify the number of reducers. On the contrary, GridGain

xes the value of the number of reducers to one.

(iv) The fourth factor is the existence of a direct physical connection between two
communicating components. A direct physical connection between two com-
ponents means that two nodes respectively holding the two components are
physically connected to each other.

(v) The last factor is the contention over the communicating path. When two or
more communications are executed at the same time, the contention of the
bandwidth will appear. A possible scenario of this contention with the MapRe-
duce model could be described as follows. The mappers on various nodes are
started at almost the same time. Since the nodes in a cluster are usually of
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identical type, they have almost the same capability. As a consequence, the
mappers complete their work on each node at the same time. The outputs of
these mappers are then sent to the reducers. In this scenario, the contention of
the communicating path is caused by the transmission requests arriving almost
simultaneously.

Since the actions of transferring the data from the master node to the worker nodes
are generally much more costly than the actions of transferring the mappers from the
master to the workers, we usually transfer the mapper job code toward the location
of data. Thus, the geographical locations of the data have a strong impact on the
ef ciency.

5.3 Distributed data storage underlying MapReduce

The data-driven nature of MapReduce requires a speci c underlying data storage
support. High-Performance Computing’s traditional separating storage component
from computations is not suitable for processing a large dataset. MapReduce aban-
dons the approach of separating computation and storage. In the runtime, MapRe-
duce needs to either access data on a local disk, or access data stored close to the
computing node.

5.3.1 Google file system

Google uses a distributed Google File System (GFS) [Ghemawat et al., 2003],
[Passing, 2012] to support MapReduce computations. Hadoop provides an open-
source implementation of GFS, which is named the Hadoop Distributed File System
(HDFS) [Hadoop, 2012b]. In Google, MapReduce is implemented on top of GFS
and is run over within clusters. The basic idea of such a GFS is to divide a large
dataset into chunks, then replicate each chunk across different nodes. The chunk
size is much larger than in the traditional le system. The default chunk size is 64M
in GFS and HDFS.

The architecture of GFS follows the master-slave model. The master node is
responsible for maintaining le namespace, managing and monitoring the cluster.
Slave nodes manage their actual chunks. Data chunks are replicated across slave
nodes, with three replicas by default. When an application wants to read a le, it
needs to consult the metadata information about chunks by contacting the master
node to know on which slave nodes the required chunk is stored. After that, the
application contacts the speci c slave nodes to access data. The size of chunk is a
crucial factor in uencing the amount of data that the master node needs to handle.
The default chunk size considers a trade-off between trying to limit resource usage
and master interaction times on the one hand, and accepting an increased degree of
internal fragmentation on the other hand.
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GFS is different from the general applicative File System, such as NFS or AFS,
in that it assumes that data is updated in an append-only fashion [Brewer, 2005],
and data access is mainly long streaming reads. GFS is optimized for workload
characterized by the above-mentioned features. The following summarizes GFS’s
characteristics:

• GFS is optimized for the usage of large les, where the space ef ciency is not
very important;

• GFS les are commonly modi ed by being appended data;

• Modifying at le’s arbitrary offset is an infrequent operation;

• GFS is optimized for large streaming reads;

• GFS supports great throughput, but has long latency;

• Client’s caching techniques are considered to be ineffective.

A weakness of GFS master-slave is the single master node. The master node
plays a crucial role in GFS. It not only manages metadata, but also maintains the le
namespace. In order to avoid the master node becoming a bottleneck, the master has
been implemented using multi-threading and ne-grained locking. Additionally, in
order to alleviate the workload of the master node, the master node is designed to
only provide metadata to locate chunks, and it does not participate in the following
data accessing. Risk of single point of failure is another weakness of GFS. Once
the master node crashes, the whole le system will stop working. For handling a
master crash, a shadow masters design is adopted. The shadow master holds a copy
of the newest operation log. When master node crashes, the shadow master provides
read-only access of metadata.

5.3.2 Distributed cache memory

The combination of MapReduce and GFS guarantee high throughput, since GFS
is optimized for sequential reads and appends on large les. However, such a com-
bination has a high latency. GFS-based MapReduce heavily uses disk, in order to
alleviate the effect brought on by failures. However, this produces a large amount of
disk I/O operations. The latency for disk access is much higher than that of mem-
ory access. In GFS-based MapReduce, memory was not fully utilized [Zhang et al.,
2009]. In the GFS open-source implementation, HDFS, reading data also suffers
from high latency. Reading a random chunk in HDFS involves multiple operations.
For instance, it requires communicating with the master to obtain the data chunk lo-
cation. If data chunk is not located on the node where the read operation occurs, then
that also requires performing data transfer. Each of these operations leads to higher
latency [Lin et al., 2009].

The authors of reference [Zhang et al., 2009] argued that small-scale MapReduce
clusters, which have no more than a dozen machines, are very common in most
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companies and laboratories. Node failures are infrequent in clusters of such size.
So it is possible to construct a more ef cient MapReduce framework for small-scale
heterogeneous clusters using distributed memory. The author of the reference [Lin
et al., 2009] also proposed the idea of utilizing distributed memory. Both of these
works have chosen the open-source distributed in-memory object caching system,
memcached to provide Hadoop with an in-memory storage.

In the work of [Lin et al., 2009], the whole dataset, in the form of key-value pair,
is loaded into memcached from HDFS. Once the whole dataset is in memcached,
the subsequent MapReduce programs access data with the client API of memcached.
Each mapper or reducer maintains connections to the memcached servers. All re-
quests are made in parallel and are distributed across all memcached servers.

In the work of [Zhang et al., 2009], only the output of mappers is loaded into
memcached. The cached mapper’s output is attached to a key. Such a key is made
up of a mapper ID and its target reducer ID. Once a reducer starts, it checks whether
the outputs for it are in memcached. If it is the case, then it retrieves them from the
memcached server.

5.3.3 Data accessing

If a MapReduce framework is used, without being attached to a distributed le
system, then data locating needs to be taken charge of by developers. GridGain is
such a pure MapReduce computing framework, and it is not attached to any dis-
tributed storage system. Although this forces developers to do the low-level work of
data locating, to some extent, it provides some exibility. Data accessing no longer
needs to consult the le namespace; data forms other than les can also be the rep-
resentation of distributed stored data, e.g. data can be stored in a database on each
computing node.

GridGain’s MapReduce is composed of one master node and multiple worker
nodes. GridGain provides a useful mechanism for users to add user properties, which
are visible to master. Master nodes can identify worker nodes from the added prop-
erties. The additional properties de ned by the user can be used for different pur-
poses, such as the logical name of node, role name of node etc. Because we adopted
GridGain as the MapReduce framework, we give an example taken from our work.
In this work, we added, to each worker node, a property representing the identi er
of data fragment stored in the current worker node.

In the manual approach, a data pre-processing phase is indispensable. During
this phase, a dataset is divided into blocks, and distributed/replicated across different
worker nodes. Using the method mentioned above, a user-de ned property repre-
senting a data fragment identi er is added to each worker node. Being visible to the
master node, this user-de ned property is used for locating data chunks. An illustra-
tion is given in Figure 5.3. As this manual approach decouples underlying storage
from the computations, it provides the possibility to choose various underlying data
storages. Mappers can access a third-part data source. Because a developer can per-
sonally control data locating, data transfer between worker nodes is less frequent
than in the GFS-based MapReduce system. More importantly, the optimization over
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FIGURE 5.3: Manual data locating based on GridGain: circles represent mappers
to be scheduled. The capital letter contained in each circle represents the data block
to be processed by a speci c mapper. Each worker has a user-de ned property re-

ecting the contained data, which is visible for the master node. By identifying the
values of this property, the master node can locate the data blocks needed by each
mapper.

data accessing can be performed without being limited by a particular le system.

5.4 Large-scale data analysis based on MapReduce

Data analysis applications or OLAP applications are encountering scalability is-
sues. Facing more and more generated data, OLAP software should be able to handle
much larger datasets than ever. MapReduce naturally has good scalability, and peo-
ple argued that the MapReduce approach is suitable for a data analysis workload.
The key is to choose an appropriate implementation strategy for the given data anal-
ysis application. For choosing an appropriate implementation strategy to process a
data analysis query, two types of questions need to be answered. The rst question
is about the data placement. This short term includes several sub-questions: What
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is the most suitable data-partitioning scheme? To what degree will we partition the
dataset? What is the best data placement strategy of data partitions? The second
question is how to ef ciently perform the query over the distributed data partitions.
In a MapReduce based system, the query’s calculation is transformed into another
problem; how to implement the query’s processing with MapReduce. To answer
these questions, speci c analysis addressing various queries needs to be undertaken.

5.4.1 Data query languages

Hadoop’s rudimentary support for MapReduce, promoted the development of
MapReduce-based high-level data query languages. A data query language PigLatin
[Christopher et al., 2008], was originally designed by Yahoo, and later became an
open-source project. It is designed as a bridge between the low-level, procedural
style of MapReduce and the high-level declarative style of SQL. It is capable of han-
dling structured and semi-structured data. Programs written in PigLatin are trans-
lated into physical plans, composed of MapReduce procedures during compiling.
The generated physical plans are then executed over Hadoop.

Similarly, another open-source project, Hive [Hive, 2012] of Facebook, is a Data
Warehouse infrastructure built on top of Hadoop. It allows the aggregating of data,
the processing of ad hoc queries, and the analysis of data stored in Hadoop les.
HiveQL is a SQL-like language, which allows querying over large datasets stored as
HDFS les.

Microsoft developed a MapReduce-based declarative and extensible scripting lan-
guage, SCOPE (Structured Computations Optimized for Parallel Execution) [Ronnie
et al., 2008], targeted at massive data analysis. This language is high-level declara-
tive, and the compiler, together with optimizer, can improve SCOPE scripts through
compiling and optimizing. SCOPE is extensible. Users are allowed to create cus-
tomized extractors, processors, aggregators and combiners with the extending built-
in C# components.

5.4.2 Data analysis applications

An attempt at a MapReduce-based OLAP system was described in [Chen et al.,
2008]. The following description of their work lays out a clear example of doing
data analysis with MapReduce. The dataset used in their work is a data cube. In
particular, the data cube was coming from a web log, which is employed to analyse
the web search activities. More speci cally, the data cube is composed of two di-
mensions (keyword k and time t) and two measures (page count: pageCount and
advertisement count: adCount). During data partitioning, the data cube is divided
over dimensions of keyword and time. The cells having the same value of k and t are
put into one block. Similar to the MOLAP, the hierarchy concept is applied over the
data cube in their work. These different hierarchy levels in time dimension allow
the partitioning of a data cube with different granularities. Support of dynamic data
partitioning granularity is a unique feature of this work. Because queries processed
in their work are correlated, the results generated for one query can serve as the input
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for another query. However, the granularity of the second query is not necessarily
the same as that of the rst query, and then a change of granularity is needed. The
MapReduce-based query processing concerns two groups of nodes: nodes running
mappers, and nodes running reducers. The group of nodes is de ned at the beginning
of query processing. A mapper fetches part of dataset and generates key-value pairs
from an individual record. The key eld is related to different granularities, which
in turn depends on the query, and it can be computed using the given algorithms.
The value eld is the exact copy of the original data record. These key-value pairs
are shuf ed, and dispatched to reducers, those with the same key going to the same
reducer. The reducer performs an external sorting to group pairs with the same value
and then produces an aggregated result for each group.

Regarding commercial software, MapReduce was integrated into some commer-
cial software products. Greenplum is a commercial MapReduce database, which
enables programmers to perform data analysis on petabyte-scale datasets inside and
outside of it [Greenplum, 2012]. Aster Data Systems, a database software company
has recently announced the integration of MapReduce with SQL. Aster’s nCluster
allows one to implement exible MapReduce functions for parallel data analysis and
transformation inside the database [Aster nCluster, 2012].

5.4.3 Comparison with shared-nothing parallel databases

Despite being able to run on different hardware, MapReduce typically runs on
a shared-nothing architecture where computing nodes are connected by network,
without memory or disk sharing among each other. Many parallel databases adopted
shared-nothing architecture, as in the parallel database machines, Gamma [DeWitt
et al., 1986] and Grace [Fushimi et al., 1986].

Though MapReduce and parallel databases target different users, it is in fact pos-
sible to write almost any parallel processing task as either a set of database queries or
a set of MapReduce jobs [Pavlo et al., 2009]. This led to controversies about which
system is better for large-scale data processing. Among them, there is also criticism
of the new-rising MapReduce. Some researchers in the database eld even argued
that MapReduce is a step backward in the programming paradigm for large-scale
data intensive applications [DeWitt and Stonebraker, 2012]. However, more and
more commercial database software has begun to integrate the cloud computing con-
cept into their products. Existing commercial shared-nothing parallel databases suit-
able for doing data analysis application in clouds are: Teradata, IBM DB2, Green-
plum, DATAllego, Vertica and Aster Data. Among others, DB2, Greenplum, Vertica
and Aster Data are naturally suitable since their products could theoretically run in
the datacenters hosted by cloud computing providers [Abadi, 2009]. It is interest-
ing to compare the features of both systems. We compare a shared-nothing parallel
database and MapReduce in the following aspects:

Data partitioning. In spite of having many differences, a shared-nothing paral-
lel database and MapReduce do share one feature: the dataset is all partitioned in
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both systems. However, as in a shared-nothing parallel database, data is structured
in tables, data partitioning being done with speci c data partitioning methods. Par-
titioning takes into account the data semantics, and is run under the control of the
user. On the contrary, data partitioning in a typical MapReduce system is automati-
cally done by the system, where a user can only participate in data partitioning with
limitations. For example a user can con gure the size of the block. But the semantic
of the data is not considered during partitioning.

Data distribution. In a shared-nothing parallel database, the knowledge of data
distribution is available before query processing. This knowledge can help the query
optimizer to achieve load-balancing. In a MapReduce system, the details of data
distribution remain unknown, since distribution is automatically done by the system.

Support for schema. Shared-nothing parallel databases require that data conform
to a well-de ned schema; data is structured in rows and columns. In contrast,
MapReduce permits data to be in any arbitrary format. The MapReduce programmer
is free of schema, and data can even have no structure at all.

Programming model. Like other DBMSs, a shared-nothing parallel database sup-
ports a high-level declarative programming language, i.e. SQL, which is known by
and largely accepted by both professional and non-professional users. With SQL,
users only need to declare what they want to do, but do not need to provide a speci c
algorithm to realize it. However, in the MapReduce system, developers must provide
an algorithm in order to realize the query processing.

Flexibility. SQL is routinely criticized for its insuf cient expressive power. In or-
der to mitigate exibility, shared-nothing parallel databases allow user-de ned func-
tions. MapReduce has good exibility by allowing developers to realize all calcula-
tions in the query processing.

Fault tolerance. Both parallel databases and MapReduce use replication to deal
with disk failures. However, parallelism databases cannot handle node failures, since
they do not save intermediate results; once a node fails, the whole query processing
should be restarted. MapReduce is able to handle node failure during the execution
of MapReduce computation. The intermediate results (from mappers) are stored
before launching reducers in order to avoid starting the processing from zero in case
of node failure.

Indexing. Parallel databases have many indexing techniques, such as hash or B-
tree, to accelerate data access. MapReduce does not have built-in indexes.
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Support for transactions. The support for transactions requires the processing to
respect ACID. Shared-nothing parallel databases support transactions, since they can
easily respect ACID. But it is dif cult for MapReduce to respect such a principle.
Note that, in large-scale data analysis, the ACID is not really necessary.

Scalability. Shared-nothing parallel databases can scale well to tens of nodes, but
it is dif cult to go any further. MapReduce has very good scalability, which is proved
by Google’s use. It can scale to thousands of nodes.

Adaptability over a heterogeneous environment. As the shared-nothing parallel
database is designed to run in a homogeneous environment, it is not suited to a het-
erogeneous environment, unlike MapReduce which is able to run in a heterogeneous
environment.

Execution strategy. MapReduce has two phases, map phase and reduce phase.
Reducers need to pull each input data from the nodes where mappers were run.
Shared-nothing parallel databases use a push approach to transfer data instead of
pull. Table 5.1 summarizes the differences between parallel databases and MapRe-
duce with short descriptions.

Table 5.1: Differences between Parallel Databases and MapReduce.
Parallelism database MapReduce

Data partitioning Use speci c methods Done automatically
consider data semantic do not consider data semantic

Data distribution Known to developers Unknown
Schema support Yes No
Programming model Declarative Direct realize
Flexibility Not good Good
Fault tolerance Handle disk failures Handle disk and node failures
Indexing Support Have no built-in index
Transaction support Yes No
Scalability Not good Good
Heterogeneous Unsuitable Suitable
environment
Execution strategy Push mode Pull mode

Hybrid solution. MapReduce-like software, and shared-nothing parallel databases
have their own advantages and disadvantages. People look for a hybrid solution that
combines the fault tolerance, heterogeneous cluster, and ease of scaling of MapRe-
duce and the ef ciency, performance, and tool plug-ability of a shared-nothing par-
allel database.
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HadoopDB [Abouzeid et al., 2009] is one of the attempts at constructing such
a hybrid system. It combines parallel databases and MapReduce to exploit both
the high performance of the parallel database and the scalability of MapReduce.
The basic idea behind HadoopDB is to use MapReduce as the communication layer
above multiple nodes running single-node DBMS instances. Queries are expressed
in SQL, translated into MapReduce by extending existing tools, and as much work
as possible is pushed into the higher performing single node databases. In their
experiments, they tested several frequently used SQL-queries, such as select query,
join query, simple group-by query, etc. over one or more of the three relations.

Another way to realize such a hybrid solution is to integrate parallel database
optimization as a part of calculations running with MapReduce. Since MapReduce
does not give any limitations over the implementations, such a hybrid solution is
totally feasible. Our work’s approach also belongs to the hybrid solution.

5.5 SimMapReduce: Simulator for modeling MapRe-
duce framework

More attention is paid to MapReduce, not only by IT enterprises, but also by re-
search institutes. The researchers make efforts on theoretical analysis on MapReduce
computational model [Yang et al., 2007], scheduling mechanisms [Yu and Magoulès,
2007, Yu and Magoulès, 2008, Yu and Magoulès, 2009, Zaharia et al., 2008, Zaharia
et al., 2009], task assignment [Ucar et al., 2006, Pan et al., 2010d], and work ow
optimization, instead of implementing a real MapReduce application. In addition,
different applications require different system con gurations and parameters, so the
construction of such real MapReduce systems is extremely challenging on a large
scale of infrastructures. In view of the above considerations, simulation methods
become a good alternative, which can accelerate study progress by opening the pos-
sibility of evaluating tests with hypothesis setting in advance and by simplifying the
programming of implementation. It is easy to con gure the infrastructures according
to user requirements, and costs very little to repeatedly test various performances in
a controllable manner.

Although there are some open source supporters of MapReduce implementation,
few speci c simulators exist to offer a simulated environment for MapReduce the-
oretical researchers. Therefore, a simulation tool, SimMapReduce, has been de-
veloped to simulate the performance of different applications and scenarios using
MapReduce framework. The users of SimMapReduce only concentrate on speci c
research issues without getting concerned about ner implementation details for di-
verse service models.
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5.5.1 Multi-layer architecture

A multi-layer architecture shown in Figure 5.4, is applied for the design of the
SimMapReduce simulator for two reasons. The rst is that layered design classes
have the same module dependency. It is much clearer for both simulator design-
ers and users than plane architecture. The second is that existing technologies
and packages are easily leveraged into SimMapReduce as separate components,
so the reusable codes can save designer time and energy in similar circumstances.
More speci cally, SimJava and GridSim packages are used as the base layers of a
SimMapReduce simulator to provide the entities, communication, and task modeling
capacity.

FIGURE 5.4: Four-layer architecture.

Discrete event simulation. As a discrete event simulation infrastructure, SimJava
consists of a collection of entities connected together by ports. The process of simu-
lation advances through event delivery. Each entity responds to a coming event, and
then sends the expected action to the next entity. The way of dealing with discrete
events perfectly suits the simulation of the MapReduce framework, because enti-
ties are distributed in the cluster and Map/Reduce computations are sequential and
parallel.

Grid entity simulation. The GridSim toolkit supports entity modeling in dis-
tributed computing systems. It simulates geographically distributed resources in
multiple administrative domains, and provides interfaces to ful ll resource manage-
ment schemes. GridSim facilitates the basic provision of system components such
as grid resource, broker, gridlet, workload trace, networks, and simulation calendar.

MapReduce entity simulation. The higher level of simulation is the core of
MapReduce functionality modeling, some of which is extended by the GridSim li-
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brary. SimMapReduce toolkit can simulate various cluster environments regardless
of small shared-memory machines, massively parallel supercomputers, or large col-
lections of networked commodity PCs. Every node reserves separated slots for Map
and Reduce. Broker takes the responsibility for allocating nodes to coming users.
After a user receives a set of available nodes, the job dispatcher named master is
in charge of mapping Map/Reduce tasks to a speci c node. In the simulator, each
job possesses one correspondent master. Although several traditional broker/master
schedulers are integrated in SimMapReduce, advanced implementation of schedul-
ing algorithms and policies is open to users. They are free to achieve multi-layer
scheduling schemes on user-level and task-level. These algorithms can be conve-
niently overwritten on the basis of prede ned abstract classes. Besides, the le
transmission time is included in the completion time of jobs, which is monitored
by a FileManager. FileManager can be considered as an abstract function entity of a
HDFS Namenode, which manages the le system namespace and operations related
to les, such as input les initiation, intermediate le management and le transmis-
sion.

Scenario description. The top layer is open for users of SimMapReduce. Different
simulation scenarios are modeled by de ning speci c parameters in a con guration

le in a quick manner, so that identical results are easily promised by repeated simu-
lations. Extensive Markup Language (XML) is a set of rules for encoding documents
in machine readable form. The design goals of XML emphasize simplicity, general-
ity, and usability over the Internet. Many application programming interfaces (APIs)
have been developed to help software developers process XML data. Therefore, a
XML le is a good choice for the system con guration le of the simulator.

5.5.2 Input and output of simulator

In SimMapReduce, system parameters are con gured in the le con gure.xml,
including three parts: cluster con guration, user/job speci cation, and data storage.

Cluster con guration. The cluster consists of a number of computing resources.
Each resource, named node, encompasses several homogeneous or heterogeneous
machines. The type of machine is prede ned, varying the number of cores and the
Millions of Instruction per Second (MIPS) rating. In order to monitor MapReduce
node scheduling, each node reserves a certain number of slots for Mapper and Re-
ducer, respectively. The active execution can not exceed the max slot limitation, if
more than one task arrives. The computing capacity is scheduled by round robin
algorithm, except that all tasks are executed at the same time. The network simula-
tion is based on Gridsim. Routing information protocol is used by the router. Links
introduce propagation delays, baud rate and the maximum transmission unit (MTU)
to facilitate data transmission through a link. An example of cluster con guration is
given by Figure 5.5.
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FIGURE 5.5: Example of cluster con guration.

FIGURE 5.6: Example of user/job speci cation.

User/job speci cation. Job stands for one MapReduce application running on a
cluster. Each job consists of several Map and Reduce tasks. The task computation



104 Cloud Computing: Data-Intensive Computing and Scheduling

time is decided by the job length expressed in millions instruction (MI), not by input
data. The input of Map task is the data stored on a cluster, and its size usually follows
chunk splitting convention, 64M, for example. Intermediate le is considered as the
output of Map task as well as the input of Reduce task. The size of output le
depends on speci c applications. For a sort job, the output size equals the input size.
In comparison, the output size for a search application is much smaller, because the
search result might just be a gure or a word.

Users submit jobs to a cluster through a broker. Jobs belonging to one user arrive
simultaneously or in time sequence. Besides, the arrival rate is speci ed in advance;
the user could also assign priorities to jobs according to their importance. An ex-
ample of user/job speci cation is given by Figure 5.6. Initial data layout is about

FIGURE 5.7: Example of output.

the location of data chucks on a cluster. As the input le of Map tasks, data storage
and transferring affects the computation performance for the Map phase, even for
the overall job. We assume a uniform distribution as default. However, our design is

exible and other distributions are allowed for particular tests.

Output. The output of SimMapReduce is a report.txt, which provides a detailed
execution trace. The trace can be shown in a coarse or ne manner. The former
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records phase-level time execution for jobs, while the latter is able to record every
event. An example of simulator output is shown in Figure 5.7. Every row begins
with the time, and is followed by the name of an entity and its behavior.

5.5.3 Implementation details of simulator

FIGURE 5.8: Class diagram.
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The Class diagram is shown in Figure 5.8; the gray ones are parent classes archived
by Gridsim.

MRNode. This class models the computing infrastructure, each instance of which
stands for a physical node on a cluster. Modelers can vary the characteristics such as
processor number, speed and reserved Map/Reduce slot number. Input data is stored
on disk within the given storage. Furthermore, this class is in charge of the receiving,
executing, returning of submitted Map/Reduce task and input/intermediate/output

le transferring.

MRBroker. This class models the mediating broker between both sides of supply
and demand. It is equipped with several lists of updated information about node, user
and job, and it is capable of allocating proper nodes to jobs according to QoS needs.
The concrete allocation policy must be pointed out in the MRBrokerScheduler.

MRBrokerScheduler. This abstract class provides the possibility for modelers to
designate the scheduling algorithm used by MRBroker. A modeler can integrate cri-
teria such as client priority cost, deadline, due time, and ow to draw up a reasonable
allocation policy. The default implementation is SimpleMRBrokerScheduler, which
allocates all nodes of a cluster to every incoming job.

User. This class models the resource demander, each instance of which represents
a natural MapReduce client who communicates with the broker directly. It consists
of a sequence of jobs that arrive simultaneously, randomly, or repeatedly. As in a
real market, MapReduce users are assigned to ranks according to their priorities.

Job. This class models the core functional MapReduce service, which is deployed
on a group of nodes. It records every detail of service demands including arrival
time, deadline, program operations, granularity, and quantity of Map/Reduce tasks,
location and size of les.

MRMaster. This class models the entity which takes responsibility for assigning
and dispatching a Map/Reduce task to one node, managing intermediate les, buffer-
ing key/value pairs and supporting scheduling in static or dynamic manners. The
concrete heuristic policy must be pointed out in MRMasterScheduler.

MRMasterScheduler. This abstract class de nes abstract methods (e.g. map-
TaskScheduling and reduceTaskScheduling) which should be implemented by users.
Several elements must be taken into account for the implementation of these ab-
stract methods, such as data locality, interdependence between Map and Reduce,
and processor throughput. A default SimpleMRMasterScheduler realizes strict local
assignment for Map tasks and random assignment for Reduce tasks.
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Task. This class models the nest unit for a MapReduce job. It can be subdivided
into two types, MapTask and ReduceTask. After all the MapTasks nish, Reduc-
eTasks are created by MRMaster depending on the location of intermediate key/-
value pairs. The distinction between the two types of task mainly lies in the different
input and output les.

FileManager. This class models a manager taking charge of all operations related
to les, including recording, inquiring, tracing, updating and so on. This entity built
on the fact that a typical MapReduce computation processes massive data les on an
elastic cluster.

SimuInit. This class models initialization of simulation. It reads the parameter
values into the instances of class and starts the simulation.

5.5.4 Modeling process

FIGURE 5.9: Communication among entities.
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Since SimMapReduce is built on the discrete event simulation package SimJava, it
contains a few entities running in parallel in their own threads. The entities represent
physical objects in real MapReduce simulation, and create a network to communicate
with each other by sending and receiving messages through SimJava’s timestamp
event queue.

Main entities for node, broker, user and master are implemented by separated
classes discussed above. The communication among them is shown in Figure 5.9

In the beginning, nodes in a cluster report their characters to broker. At the same
time, users initialize their own job sequences, and send jobs one by one, depending
on arrival rate. An arbitrary job generates the amount of ordinary copies naming
MapTask and ReduceTask, as well as a special copy of an operation program, the
master, acting on behalf of job.

In every round, the master rst sends information to the broker to request avail-
able nodes. MRBroker matches both sides’ requirement and allocates a number of
nodes to the master for its inner scheduling. The master manages the scheduling
of Map/Reduce tasks, and supervises their execution. When all subtasks have been
completed, the master reports job completion to the user and destroys itself. Concrete
control ow of the master is shown in Figure 5.10.

When a user has completed all jobs in the sequence, it informs the broker of the
information. If no more jobs are created, the broker gathers the simulation data and

nishes simulation. The MRMaster is in charge of spawning Map and Reduce tasks,
scheduling tasks to working nodes, managing their associate data, and producing
the nal output le. Every process is triggered by an event message. Having the
available node list, MRMaster picks idle nodes to schedule MapTasks. As soon as a
node receives a MapTask, it checks whether the input le is on local disk. If not, the
node asks for input transmission. When input data is ready, MapTask runs its Map
function. After that, intermediate les produced by Map operations are buffered on
memory. MapTask then reports its completion to MRMaster. MRMaster keeps on
examining whether all MapTasks nish. If yes, MRMaster stops the Map phase, and
starts the shuf e phase that groups the key/value pairs by common values of the key.
Generally, data with the same key will be sent to one ReduceTask.

In the begining of Reduce phase, MRMaster makes a scheduling decision to dis-
patch ReduceTasks to different nodes. The rst action in the Reduce phase is read-
ing intermediate les remotely. In our current design, each ReduceTask receives an
equal part from each MapTask output. Thus the input of ReduceTask sums up all
intermediate les regardless of weight. Then the Reduce function is operated, gener-
ating output le. Similarly as in the Map phase, the MRMaster collects the message
about the completion of the ReduceTask. When they all nish, a nal output result
is obtained. The computation of the job terminates, and its manager, the MRMaster
breaks down.



Data intensive applications with MapReduce 109

FIGURE 5.10: Control ow of MRMaster.

5.6 Concluding remarks

In this chapter, we rst introduced the basic idea and related issues of MapReduce
model and its extended model, MapCombineReduce. Two implementation frame-
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works of MapReduce, Hadoop and GridGain were presented. They have different
latency. Hadoop has high latency, while GridGain has low latency. Under the in-
teractive response time requirement, GridGain is a suitable choice for our work.
The MapReduce model hides the underlying communication details. We analysed,
in particular, the communication cost of the MapReduce procedure, and discussed
the main factors that in uence the communication cost. We then discussed the job-
scheduling issues in MapReduce. In MapReduce job-scheduling, two more things
need to be considered than in other cases: data locality, and dependence between
mapper and reducer. Our discussion also involves MapReduce ef ciency and its
application on different hardware. Second, we described the distributed data stor-
age underlying MapReduce, including distributed lesystems, like GFS and its open
source implementation—HDFS, an ef cient enhanced storage system based on a
cache mechanism. Another approach is manual support of MapReduce data access
adopted in our work. The third topic addressed in this chapter is data management
in the cloud. The suitability of being processed with MapReduce was discussed
for transactional data management and analytical data management. The latter was
thought to be able to bene t from MapReduce model. Relying on this, we fur-
ther addressed large-scale data analysis based on MapReduce. We presented the
MapReduce-based data query languages and data analysis related work with MapRe-
duce. As shared-nothing parallel database and MapReduce system use similar hard-
ware, we focused on comparing them and followed by presenting the related work
on a hybrid solution combining these two into one system. Finally, we introduced
related parallel computing frameworks.



Chapter 6

Large-scale multi-dimensional data
aggregation

6.1 Introduction

In this chapter, we will present the MapReduce-based multi-dimensional data ag-
gregation. We will rst describe the background of our work, as well as the organi-
zation of data used in our work. Then we will introduce Multiple Group-by query,
which is also the calculation that we will parallelize relying on MapReduce. We
will give two implementations of Multiple Group-by query, one is based on MapRe-
duce, and the other is based on MapCombineReduce. The job de nitions for each
implementation will be speci cally described. We will also present the performance
measurement and execution time estimation.

6.2 Data organization

The traditional data cube is stored either in the form of multi-dimensional data
array (in MOLAP) or under star-schema (in ROLAP). MOLAP suffers from sparsity
of data. When the number of dimensions increases, the sparsity of the cube also
increases at a rapid rate. Sparsity is an insurmountable obstacle in MOLAP. In ad-
dition, MOLAP pre-computes all the aggregates. When the amount of data is large
enough, pre-computation will take a long time. Thus, MOLAP is only suitable for
datasets of small and moderate size. In contrast, ROLAP is more suitable for datasets
of large size. In ROLAP, one of the traditional query accelerating approaches is pre-
computing1. The pre-computing approach requires that all the aggregated values
contributing to the potential queries be computed before processing queries. For
this purpose, the database administrators need to identify the frequently demanded
queries from numerous past queries, and then build materialized views and indexes
for these queries. Figure 6.1 shows the data organization in case of employing mate-
rialized views. Certainly, query response time is reduced by this approach. However,

1Refer to Section 4.2 for more information.
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the computations involved in this approach are heavy; more calculations are needed
for choosing the optimal one from multiple materialized views during query pro-
cessing. Materialized views can only help to accelerate processing of a certain set
of pre-chosen queries, not to accelerate the processing of all queries. Another disad-
vantage of materialized views is that they take up a lot of storage space.

An alternative approach to organizing data is to store one overall materialized
view. The materialized view is a result of join operations among all dimension tables
and the fact table. Assume a dataset is from an on-line apparel selling system, record-
ing the sales records of all products in different stores during the last three years.
This dataset is originally composed of four dimension tables (COLOR, PRODUCT,
STORE, WEEKS) and one fact table (FACT). Refer to the sub- gure (a) of Figure
6.1 for the star-schema de nition of the dataset. The overall materialized view is
named ROWSET. Each record stored in ROWSET contains values of all measures
retrieved from the original FACT table associated with the distinct values of different
dimensions retrieved from dimension tables. The List 6.1 shows the SQL statements
used to generate the materialized view, ROWSET. Those SQL statements are written
in psql, which can be interpreted and executed in PostgreSQL. A graphic illustration
is available in Figure 6.2:

Listing 6.1: SQL statements used to create materialized view—ROWSET

DROP TABLE IF EXISTS ”ROWSET” CASCADE ;
CREATE TABLE ”ROWSET” AS
SELECT c . ” co lo r name ” AS co l o r ,

p . ” f ami ly name ” AS p r o d u c t f a m i l y ,
p . ” f a m i l y c o d e ” AS p roduc t code ,
p . ” a r t i c l e l a b e l ” AS a r t i c l e l a b e l ,
p . ” c a t e g o r y ” AS p r o d u c t c a t e g o r y ,
s . ” s t o r e n a m e ” AS s t o r e name ,
s . ” s t o r e c i t y ” AS s t o r e c i t y ,
s . ” s t o r e c o u n t r y ” AS s t o r e s t a t e ,
s . ” o p e n i n g y e a r ” AS open i ng yea r ,
w. ”week” AS week ,
w. ” month ” AS ” month ” ,
w. ” q u a r t e r ” AS q u a r t e r ,
w. ” y e a r ” AS ” ye a r ” ,
f . ” q u a n t i t y s o l d ” AS q u a n t i t y s o l d ,
f . ” r evenue ” AS r evenue

FROM ”WEEKS” w JOIN
( ”COLOR” c JOIN
( ”PRODUCT” p JOIN
( ”STORE” s JOIN
”FACT” f ON ( f . ” s t o r e i d ”=s . ” s t o r e i d ” ) )
ON ( f . ” p r o d u c t i d ”=p . ” p r o d u c t i d ” ) )
ON ( f . ” c o l o r i d ”=c . ” c o l o r i d ” ) )

ON (w. ” week id ”= f . ” week id ” ) ;



Large-scale multi-dimensional data aggregation 113

(a)

(b)

FIGURE 6.1: Storage of original dataset and the pre-computed materialized views
for the identi ed, frequently demanded queries: sub- gure (a) shows original data
set under star-schema; sub- gure (b) shows several materialized views created based
on the original dataset represented in (a).
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FIGURE 6.2: Overall materialized view—ROWSET.

In this work, the data organization of a single overall materialized view is adopted.
It has several advantages. First, compared with multiple materialized views ap-
proaches, the required storage space is reduced. Second, the overall materialized
view is not created for optimizing a set of pre-chosen queries, instead, all queries can
bene t from this materialized view. Third, with one materialized view, the emerging
search engine techniques could be easily applied. In particular, in this work, one
materialized view approach greatly simpli es data partitioning and indexing work.

Term speci cation. From now on, the terms dimension and measure are slightly
different from the recognized terms with common names in the OLAP eld. In
order to avoid confusion, we would like to newly declare the de nitions of these two
terms. If not additionally speci ed, the following occurrences of the two terms adopt
the de nitions below.

• Dimension is a type of column, of which the distinct values are of type text.

• Measure is a type of column, of which the distinct values are of type numeric.

To be noted, hierarchy is not adopted in this terminology.

6.2.1 Computations in data explorations

Usually in data explorer products, the user selects an information space, and then
enters into a relevant exploration panel. The rst page displayed in the exploration
panel shows aggregated measures dimension by dimension. The user can select var-
ious aggregate functions, such as COUNT, SUM, AVERAGE, MAX, MIN, etc, by
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clicking on a drop-list. Assuming the aggregate function SUM applied on all the
measures, then the computations involved within the display of the rst page are
actually equivalent to execution of SQL statement of the List 6.2.

Listing 6.2: SQL statements used for displaying the rst page of exploration panel.

DROP VIEW IF EXISTS page 0 CASCADE ;
CREATE VIEW page 0 AS
SELECT ∗ FROM ”ROWSET”
;
DROP VIEW IF EXISTS d imens i on 0 ;
CREATE VIEW d imens i on 0 AS
SELECT ” page 0 ” . ” c o l o r ” AS d i s t i n c t v a l u e ,

SUM( page 0 . ” q u a n t i t y s o l d ” ) AS q u a n t i t y s o l d ,
SUM( page 0 . ” r evenue ” ) AS r evenue

FROM ” page 0 ”
GROUP BY ” d i s t i n c t v a l u e ”
;
DROP VIEW IF EXISTS d imens i on 1 ;
CREATE VIEW d imens i on 1 AS
SELECT ” page 0 ” . ” p r o d u c t f a m i l y ” AS d i s t i n c t v a l u e ,

SUM( page 0 . ” q u a n t i t y s o l d ” ) AS q u a n t i t y s o l d ,
SUM( page 0 . ” r evenue ” ) AS r evenue

FROM ” page 0 ”
GROUP BY ” d i s t i n c t v a l u e ”
;
DROP VIEW IF EXISTS d imens i on 2 ;
CREATE VIEW d imens i on 2 AS
SELECT ” page 0 ” . ” p r o d u c t c a t e g o r y ” AS d i s t i n c t v a l u e ,

SUM( page 0 . ” q u a n t i t y s o l d ” ) AS q u a n t i t y s o l d ,
SUM( page 0 . ” r evenue ” ) AS r evenue

FROM ” page 0 ”
GROUP BY ” d i s t i n c t v a l u e ”
;
−−−−−−−−−−−r e p e a t f o r a l l t h e d imens ions−−−−−−−−−

If a user nds an anomalous aggregated value, for example, a certain product cat-
egory, say, “swimming hats” has too low a quantity sold, and he/she wants to see
the detail data over the speci c product category, then a detailed exploration is per-
formed and the second page is generated. The second page displays the “swimming
hats” related measures aggregated over different dimensions. The computation in-
volved in displaying the second page of exploration panel is equivalent to execution
of SQL statement in List 6.3.

Listing 6.3: SQL statements used for displaying the second page of exploration
panel.
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DROP VIEW IF EXISTS page 1 CASCADE ;
CREATE VIEW page 1
AS
SELECT ∗ FROM ” page 0 ”
WHERE ” p r o d u c t c a t e g o r y ”= ’Swimming h a t s ’
;
DROP VIEW IF EXISTS d imens i on 0 ;
CREATE VIEW d imens i on 0 AS
SELECT ” page 1 ” . ” c o l o r ” AS d i s t i n c t v a l u e ,

SUM( page 1 . ” q u a n t i t y s o l d ” ) AS q u a n t i t y s o l d ,
SUM( page 1 . ” r evenue ” ) AS r evenue

FROM ” page 1 ”
GROUP BY ” d i s t i n c t v a l u e ”
;
DROP VIEW IF EXISTS d imens i on 1 ;
CREATE VIEW d imens i on 1 AS
SELECT ” page 1 ” . ” p r o d u c t f a m i l y ” AS d i s t i n c t v a l u e ,

SUM( page 1 . ” q u a n t i t y s o l d ” ) AS q u a n t i t y s o l d ,
SUM( page 1 . ” r evenue ” ) AS r evenue

FROM ” page 1 ”
GROUP BY ” d i s t i n c t v a l u e ”
;
DROP VIEW IF EXISTS d imens i on 2 ;
CREATE VIEW d imens i on 2 AS
SELECT ” page 1 ” . ” p r o d u c t c a t e g o r y ” AS d i s t i n c t v a l u e ,

SUM( page 1 . ” q u a n t i t y s o l d ” ) AS q u a n t i t y s o l d ,
SUM( page 1 . ” r evenue ” ) AS r evenue

FROM ” page 1 ”
GROUP BY ” d i s t i n c t v a l u e ”
;
−−−−−−−−−−−r e p e a t f o r a l l t h e d imens ions−−−−−−−−−

Similarly, further exploration can be achieved by applying both the current WHERE
condition "product category"="Swimming hats" and the new condition
coming from the exploration panel.

As seen from the above illustration, a typical computation involved in data explo-
ration is the Group-by query, on different dimensions, with aggregates using various
aggregate functions. Without considering other features of data explorer, we could
say that the computations involved in a data exploration are composed of a couple of
elementary Group-by queries having the following form:

SELECT DimensionA ,
a g g r e g a t e f u n t i o n ( Measure1 ) ,
a g g r e g a t e f u n t i o n ( Measure2 )

FROM ”ROWSET”
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WHERE DimensionB=b
GROUP BY DimensionA ;

Group-by query is a typical OLAP query. Because of OLAP queries wide appli-
cation, a lot of research work has been done. The characteristics of these queries are
summarized in [Liao and Pei, 2008]. The two important characteristics of an OLAP
query—including Group-by query—are:

• most of them include aggregate functions;

• they usually include selection clauses.

Going any further from the two characteristics, one Group-by query involves two
processing phases, ltering and aggregating. During the ltering phase, the WHERE
condition is applied to lter the records of a materialized view. During the aggregat-
ing phase, the aggregate function is performed over the ltered records.

6.2.2 Multiple group-by query

To be able to respond to a user’s exploration, multiple Group-by queries need to be
calculated simultaneously, instead of one single Group-by query. The term Multiple
Group-by query expresses more clearly the characteristics of the query addressed in
this work. De ning the Multiple Group-by query, we describe it as follows: To de ne
Multiple Group-By query is a set of Group-by queries using the same select-where
clause block. More formally, a Multiple Group-By query can be expressed in SQL in
the following form:

SELECT X, SUM( ∗ ) ,
FROM R WHERE c o n d i t i o n
GROUP BY X
ORDER BY X;

where X is a set of columns on relation R.
Some commercial database systems support a similar Group-by construct named

GROUPING SETS, and it allows the computation of multiple Group-by queries us-
ing a single SQL statement [Zhimin and Vivek, 2005]. Compared with the Multiple
Group by query addressed in this work, a GROUPING SETS query is slightly differ-
ent. Each Group-by query contained in a GROUPING SETS query could have more
than one group-by dimension, i.e. one Group-by query aggregates over more than
one dimension, whereas in this work, one Group-by query aggregates over only one
dimension.

In data exploration environment, processing Multiple Group-by query has several
challenges. The rst challenge is large data volume. In a very common case, the his-
torical dataset is often of large size. The generated materialized view is also of large
size. In order for a user to do analysis as comprehensively as possible, the historical
dataset contains many dimensions. It is not rare that the generated overall material-
ized view has more than ten dimensions. The second challenge is the requirement
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of short response time. It is a common demand for all the interactive interface ap-
plications, including data exploration. Multiple Group-by queries aggregating over
all dimensions is repeatedly invoked and processed during data exploration, then it
is required that each query be answered within a very short time, for example, not
more than ve seconds, ideally; within hundredths of milliseconds. Summarizing
these challenges’ description—doing time and resource consuming computations in
a short time.

Parallelization is the solution to address these challenges: partition the large mate-
rialized view ROWSET into smaller blocks, then process a query over each of them,

nally merge the results. One particularity of this work is that we utilize cheap com-
modity hardware instead of expensive supercomputers. This is also the signi cant
side of this work. This particularity brings further challenges, scalability and fault
tolerance issues. To address these challenges, we adopt the MapReduce model, and
the detailed speci cations will be given later in this chapter.

6.3 Choosing a right MapReduce framework

There are several projects and research works focusing on building speci c
MapReduce frameworks for various hardware and different distributed architectures.
In our work, we adopt the shared-nothing clusters, which are available for free2.
Some well-designed MapReduce frameworks have already been realized for this
type of hardware architecture. We need to choose the right framework to satisfy
the speci c requirement.

6.3.1 Advantages of GridGain

Interactivity, i.e. short response time, is the basic requirement in this work. In
order to meet this requirement, while the application-level optimization is essential,
choosing a right underlying MapReduce framework is also important. At the time we
chose our framework, there were two different open-source MapReduce frameworks
available, Hadoop [Hadoop, 2012a] and GridGain [GridGain, 2012].

At rst, Hadoop was chosen as the MapReduce supporting framework. We suc-
cessfully installed and con gured Hadoop in a cluster of two computers, and ran
several simple tests over Hadoop. The experiment execution time over Hadoop was
not satisfying. An application of ltering materialized view of small size with a
given condition already took several seconds, which is too slow for interactive in-
terface. This phenomenon was then diagnosed as a consequence of the high latency
of Hadoop. Actually, high latency is consistent with the initial design of Hadoop.
Hadoop is designed to address batch-processing application. Batch-processing appli-

2Grid’5000, for more information, refer to [Grid’5000, 2012]
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cation only emphasizes high-throughput. In such a context, high-latency is insignif-
icant. The high-latency is also a side effect of Hadoop’s “MapReduce + HDFS”
design, of which more explanation can be found in Subsection 5.2.2.

Another MapReduce framework, GridGain, was nally adopted as the underlying
framework in this work. GridGain offers a low latency since it is a pure MapRe-
duce engine without being associated with a distributed le system. Therefore, data
partitioning and distributing should be managed manually. Although this increases
the workload of programmers, they have a chance to do optimizations at the data
access level. Additionally, GridGain provides several pre-de ned scheduling poli-
cies including data af nity scheduling policy, which can be bene cial for processing
multiple continuous queries.

6.3.2 Combiner support in Hadoop and GridGain

The Combiner is an optional component, which is located between the mapper
and the reducer. In Hadoop, the combiner component is implemented, and a user
can choose to use or not to use it freely. The combiner is physically located on
each computing node. Its function is to locally collect the intermediate outputs from
the mappers running on the current node before these intermediate outputs are sent
over the network. In certain cases, using this combiner component can optimize the
performance of the entire model. The objective of using a combiner is to reduce the
intermediate data transfer.

This optional component combiner is not implemented in GridGain. In this work,
we propose a bypass method to make GridGain a supporting combiner. Although this
method is implemented on top of GridGain, it is not limited to work with GridGain.
The same idea can also be carried out on other MapReduce frameworks. We illus-
trate this method in the Figure 6.3. A GridGain MapReduce is composed of multi-
ple mappers and one reducer. In this method, we utilized two successive GridGain
MapReduce tasks. In the rst MapReduce task, the mappers correspond to the map-
per component of MapCombineReduce model, and its reducer acts as a trigger to
activate the second MapReduce task, once the rst MapReduce mappers have all

nished their work. The mappers of the second MapReduce task actually act as
the combiner component of MapCombineReduce model. The reducer of the sec-
ond MapReduce task does the job of the reducer component of MapCombineReduce
model.

6.3.3 Realizing MapReduce applications with GridGain

GridGain provides developers with Java-based technologies to develop and to run
grid applications on private or public clouds. In order to implement a MapReduce ap-
plication, there are mainly two classes needed to de ne in GridGain, i.e. Task, and
Job. Task class de nition requires a developer to realize map() and reduce()
functions. Job class de nition requires a developer to realize execute() function.
The name of map() might be confusing. This name misleads people to think it de-

nes the calculations to be carried out in a mapper. But in fact, the map() function
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FIGURE 6.3: Creating the task of MapCombineReduce model by combining two
GridGain MapReduce tasks.

is responsible for establishing the mappings between the mappers and the worker
nodes. This function could be utilized to apply user-de ned job-scheduling policy.
GridGain provides some pre-de ned implementations of map() function, which sup-
port various job-scheduling policies, including data af nity, round robin, weighted
random, etc. The web site of GridGain [GridGain, 2012] gives the readers more
descriptions of GridGain’s supported job-scheduling policies. execute() is actu-
ally the function specifying operations performed by mapper. execute() contains
the distributed computations which will be executed in parallel with other instances
of the execute() function. When a mapper arrives at a remote worker node, a col-
lision resolving strategy will look into a queue of existing mappers on this worker
node to either reject the current mapper or leave it waiting in the queue. When the
mapper runs, the execute() function will be executed. The Reduce function
contains the actions of reducing, collecting mappers intermediate outputs and cal-
culating the nal result. It is usually composed of some aggregate-type operations.
The Reduce() function’s execution is activated by the arrival of the mappers’ in-
termediate outputs. According to the policy de ned by the user, reduce() can be
activated once the rst intermediate output from a mapper arrives at the master node,
or after the sub-results of all the mappers have arrived. The default policy is to wait
for all the mappers to nish their work and then to activate the reduce() method.
In addition, the developer also needs to de ne a task loader program, which takes
charge of initializing the parameters, starting a grid instance, launching the user’s
application, and then waiting for and collecting the results.

6.3.4 Workflow analysis of GridGain procedure

GridGain’s MapReduce is composed of multiple mappers and one reducer. The
mappers are sent to and run on worker nodes, and the reducer runs on the master
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node. To fully understand the procedure of GridGain’s MapReduce, we analyzed the
log le of GridGain and also did the pro ling work when running the MapReduce
application. The following description of GridGain MapReduce work ow is based
on this analysis.

The Figure 6.4 shows the work ow of a GridGain’s MapReduce task. When a
master starts a MapReduce task, it in fact starts a thread for this task. The thread
does the start-up work and closure work for the task. The start-up work includes the
following steps.

1. First, the master creates mappings between user-de ned jobs (mappers) and
available worker nodes;

2. Second, the master serializes mappers in a sequential way ;

3. Once all the mappers are serialized, the master sends each mapper to the cor-
responding worker node.

After all the mappers have been sent, the thread terminates and the master enters
into a “waiting” status. This “waiting” status continues until the master node receives
the mappers’ intermediate outputs. When the master node receives a mapper’s inter-
mediate output, it begins to de-serialize this intermediate output immediately. After
all the intermediate outputs have been de-serialized, it then starts the reducer. The
de-serialization and reducer execution compose the task’s closure.

On the other side, the worker node listens to the messages after the GridGain
instance is started. When it receives a message containing a serialized mapper object,
it will de-serialize the message, and thereby obtain the mapper’s object. Then, the
mapper is put into a queue waiting to be executed once one or more CPU becomes
available. After the mapper’s execution is accomplished, the intermediate output is
serialized and sent back to the master node.

FIGURE 6.4: Work ow diagram of MapReduce-based application in GridGain.
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6.4 Parallelizing single group-by query with MapReduce

Before addressing the parallelization of a Multiple Group-by query, we describe
the processing of the elementary query—a single Group-by query—in MapReduce.
Intuitively, a single Group-by query could be well matched with a MapReduce
model. A single Group-by query can be executed in two phases: the rst phase is

ltering, and the second phase is aggregating. The other operations (regroup) can be
incorporated into the aggregating phase. The ltering phase corresponds to the map-
pers’ work in MapReduce, and the aggregating phase corresponds to its reducer’s
work.

As an example of Group-by query, we consider another
materialized view, LINEITEM with two dimensions and one measure,
LINEITEM(OrderKey,SuppKey,Quantity), and one Group-by query of the form:

SELECT ” Orderkey ” , SUM( ” Q u a n t i t y ” )
FROM ”LINEITEM”
WHERE ” Suppkey ” = ’ 4633 ’
GROUP BY Orderkey

The above query performs the following operations on the materialized view,
LINEITEM. The rst operation is ltering, which makes records to be ltered by
the WHERE condition. Only the records matching the condition “"Suppkey" =
’4633’” are retained for the subsequent operations. Within the next operation,
these tuples are regrouped into groups according to the distinct values stored in the
dimension OrderKey. The last operation is a SUM aggregation, which adds up
the values of the measure Quantity. The SUM aggregation is executed on each
group of tuples. Figure 6.5 illustrates how this MapReduce model-based processing
procedure is organized.

6.5 Parallelizing multiple group-by query with MapRe-
duce

A Multiple Group-by query can also be implemented in these two phases. In a
Multiple Group-by query, with multiple single Group-by queries having the same
WHERE condition, we propose that the mapping phase perform the computation for

ltering data according to the condition de ned by the common WHERE clause. The
aggregating phase still corresponds to a set of reduce-type operations. For a Multiple
Group-by query, the aggregating phase consists of a couple of aggregating operations
performed on several different Group-by dimensions. In this work, we use the re-
ducer to implement the aggregating phase at rst, and then we propose an optimized
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FIGURE 6.5: Single Group-by query’s MapReduce implementation design. This
design corresponds to the SQL query SELECT Orderkey SUM(Quantity) FROM
LINEITEM WHERE Suppkey = 4633 GROUP BY Orderkey.

implementation based on the extended MapCombineReduce model. The following
content in this section will give more details about these two implementations.

6.5.1 Data partitioning and data placement

The materialized view ROWSET used in our tests is composed of 15 columns,
including 13 dimensions and 2 measures. We partition this materialized view into
several blocks. The horizontal partitioning method [Stephano et al., 1982] is used to
equally divide ROWSET. As a result, each block has an equal number of records, and
each record keeps all the columns from the original ROWSET. All the data blocks
are replicated on every participating worker node. This is inspired by the Adaptive
virtual partitioning method proposed in [Lima et al., 2004a]. Such a method allows to
conveniently realize the distribution of data without worrying about the accessibility
problem caused by a data placement strategy. With all the data blocks available on
all the worker nodes, the data location work is simpli ed.

6.5.2 MapReduce model-based implementation

The initial implementation of the MapReduce model-based Multiple Group-by
query we have developed is shown in Figure 6.6. In this implementation, the mappers
perform the ltering phase, and the reducer performs aggregating phase. In order to
realize the ltering operations, each mapper rst opens and scans a certain data block
le, locally stored on the worker node, and then selects the records which meet the

conditions de ned in the WHERE clause. In this way, each mapper lters out a
group of records. After that, all the records ltered by the mappers are sent to the
reducer as intermediate outputs. The Algorithm 6.5.1 describes this processing with
pseudo-code.

The reducer realizes the aggregating operations as follows. First, the reducer cre-
ates a set of aggregate tables to save the aggregate results. Each aggregate table
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FIGURE 6.6: Initial Multiple Group-by query implementation based on the MapRe-
duce model.

FIGURE 6.7: Aggregate table structure.

corresponds to a Group-by dimension. The aggregate table is a structure designed
to store the aggregate value for one dimension. In addition to the distinct values of
the dimension, the aggregate table also stores aggregate values calculated by apply-
ing user de ned aggregate functions over different measures. As shown in Figure
6.7, the rst column stores the distinct values of dimension, and the corresponding
aggregate values are stored in the remaining columns. The number of aggregate
functions (denoted as nbagg) contained in the query determines the total number of
columns. There are in total nbagg + 1 columns in the aggregate table.

As an example, we specify the construction of aggregate tables for the Multiple
Group-by query below:

SELECT
SUM( ” r evenue ” ) , SUM( ” q u a n t i t y s o l d ” ) , ” p r o d u c t f a m i l y ”

FROM ”ROWSET”
WHERE ” c o l o r ”= ’ Pink ’
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GROUP BY ” p r o d u c t f a m i l y ”
;
SELECT

SUM( ” r evenue ” ) , SUM( ” q u a n t i t y s o l d ” ) , ” s t o r e n a m e ”
FROM ”ROWSET”
WHERE ” c o l o r ”= ’ Pink ’
GROUP BY ” s t o r e n a m e ”
;
SELECT

SUM( ” r evenue ” ) , SUM( ” q u a n t i t y s o l d ” ) , ” y e a r ”
FROM ”ROWSET”
WHERE ” c o l o r ”= ’ Pink ’
GROUP BY ” ye a r ”
;

This Multiple Group-by query includes three single Group-by queries; each query
includes two aggregate functions. Thus, we need to create three aggregate tables.
For the rst Group-by query aggregating over dimension product family, the
aggregate table has three columns. The rst column is used to store different distinct
values appearing in the records which meet the WHERE condition E > e. The sec-
ond and third columns are used to store the corresponding aggregate values for each
distinct value of the dimension product family. In this example, the two aggre-
gate functions are both SUM. The aggregate table for the second and third Group-by
queries, are constructed in a similar way. The aggregate table is implemented as a
Hash table in over program.

Second, the reducer scans all intermediate results, and simultaneously the reducer
updates the aggregate tables by aggregating the newly arriving aggregate values
onto some records in the aggregate tables. The nal result obtained by the reducer
is a group of aggregate result tables, each table corresponding to one Group-by query.
The Algorithm 6.5.2 describes this processing in pseudo-code.

Algorithm 6.5.1 Filtering in Mapper.
Input: data block, Multiple Group-by query
Output selectedRowSet
Load data block into rawData
for record ∈ rawData do

if record passes WHERE condition then
recordID →matchedRecordIDs

end if
end for
for recordID ∈ matchedRecordIDs do

copy rawData[recordID] to selectedRowSet
end for



126 Cloud Computing: Data-Intensive Computing and Scheduling

Algorithm 6.5.2 Aggregating in Reducer.
Input: selectedRowSet
Output: aggs
for dimension ∈ GroupByDimensions do

create a aggregate table: agg
end for
for record ∈ selectedRowSet do

for dimension ∈ GroupByDimensions do
if (value of dimension in record) ∈ agg of dimension then

assuming existing record is r
for agg func() ∈ agg func list do

update r.field(1 + a) with agg func(r)
end for

else
Insert into agg a new record rr where
rr.field1 = value of GroupByDimension
for agg func() ∈ agg func list do

rr.field(1 + a) = agg func(rr)
end for

end if
end for

end for

In this initial implementation, the reducer works on all the records ltered by
the WHERE condition. The most important calculations, i.e. the aggregations, are
performed in the reducing phase. It takes all the ltered records as its input data.
Such an implementation is a general approach to realizing a MapReduce application.
However, it is not fully suitable for GridGain. Because of the limitation of GridGain
(only one reducer), all the ltered records should be transferred over the network.
This could cause high overhead when the bandwidth is limited.

6.5.3 MapCombineReduce model-based implementation

In the initial implementation, all the intermediate outputs produced by the map-
pers (i.e. all the records matching the WHERE condition), are sent to the reducer
over the network. If query selectivity 3 under the given WHERE condition is rela-
tively small, for instance 1%4, then output of mapping phase will be moderate, and
the initial implementation is suitable. However, if the query selectivity is larger, for
instance, 9%, then the number of records will be great and the volume of data being

3Here, a selectivity of a select query means the ratio value between the number of records satisfying the
predicate de ned in the WHERE clause and the cardinality of the relation.
4This means that only 1% of the records are selected from the data source table.
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FIGURE 6.8: Optimized Multiple Group-by query implementation based on Map-
CombineReduce model.

transferred over the network will become large, which results in a higher communi-
cation cost. As a consequence, the initial implementation is not suitable for queries
with relatively large selectivity.

In order to reduce the network overhead caused by the intermediate data trans-
mission for queries with larger selectivity value, we propose a MapCombineRe-
duce model-based implementation. We let the combiner component act as a pre-
aggregator on each worker node. In this work, the number of combiners of each
worker node is one. In optimized MapCombineReduce model-based implementa-
tion, the mapper rst performs the same operations of the ltering phase as in the
initial implementation. However, the result of the ltering phase will be put into
the local cache instead of being sent over the network immediately. The mapper
then sends out a signal when it has nished its work. The trigger (i.e. reducer in
the rst MapReduce task) will receive this signal. When the trigger receives all the
work nished signals, then it activates the second MapReduce task. In the second
MapReduce task, the combiner (i.e. the mapper of the second MapReduce task)
does the aggregating operations locally within each worker node. Each of the com-
biners generates a portion of aggregate the results, i.e. a set of partial aggregate
tables. Then they send out their partial results to the reducer. After merging all
the partial results, the reducer generates the nal aggregate tables of the Multiple
Group-by query. Thus, the volume of data to be transferred is reduced during the
pre-aggregation phase, which in turn reduces the total communication cost. Figure
6.8 illustrates the MapCombineReduce model-based Multiple Group-by query pro-
cessing.
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6.6 Cost estimation

In this section, we will describe a basic estimation of execution time of the Multi-
ple Group-by query. This cost estimation respectively addresses the initial imple-
mentation based on the MapReduce and optimized implementation based on the
MapCombineReduce. As mentioned earlier, a GridGain MapReduce task calcula-
tion is composed of the start-up and closure on the master node, and the mapper ex-
ecutions over worker nodes. In this work, we are also interested in the optimization
over communication cost, thus, communication time is considered, but we ignore the
extra cost incurred by the resource contention over each worker node when running
multiple mappers.

6.6.1 MapReduce model-based implementation

Assume that the Multiple Group-by query runs over a materialized view of N
records, and the query has nbGB Group-by dimensions. We use MapReduce-based
method to parallelize query processing. The parallel Multiple Group-by query’s total
cost is composed of four parts:

• Start-up cost(on master node), denoted as Cst;

• Mapper’s execution (on workers), denoted as Cm;

• Closure cost (on master node), denoted as Ccl;

• Communication cost, denoted as Ccmm.

In start-up, the master does the preparation of mappers, including the mappings
from mappers to available worker nodes, and then sequentially performs the serial-
izations of mappers with their attached arguments. We use Cmpg to denote the time
for building mapping between mappers and worker nodes, Cs the time for serializing
one unit size of data, sizem the size of mapper object, nbm the number of mappers.
The notations that are used for expressing the cost estimation are listed in the Table
6.1.

Without considering the low-level details of serialization5, we simply assume that
the serialization time is proportional to the size of data being serialized, i.e. a bigger
mapper object consumes more time during the serialization. Therefore, a MapRe-
duce task of GridGain, the start-up cost Cst over master node is:

Cst = (Cmpg + Cs · sizem) · nbm
When a worker node receives a message containing a mapper, it rst serializes the

mapper as well as its arguments; it then launches the execution of the mapper. When

5The details of serialization will be discussed in Chapter 7.
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Table 6.1: Notations Used for Describing the Cost Estimation.

Notation Description

N records number of whole dataset
Cst start-up cost
Cm

st mapper’s start-up cost (optimization)
Cc

st combiner’s start-up cost (optimization)
Cm

w cost spent on worker for executing
mapper (optimization)

Cc
w cost spent on worker for executing

combiner (optimization)
Ccl closure cost
Cw cost spent on one worker
Cmpg cost of creating a mapping

from mapper to a worker node
Ccmm communication cost
Cm mapper’s cost
Cr reducer’s cost
Cc combiner’s cost
Cs one unit data’s serialization cost
Cd one unit data’s de-serialization cost
Cl cost of loading a record into memory
Cn network factor, cost of transferring a unit of data
Cf cost of ltering a record
Ca cost of aggregating a record
Ci total cost of initial implementation

Table 6.2: Notations Used for Describing the Cost Estimation (continued).

Notation Description

sizem size of mapper object
sizec size of combiner object
sizerslt size of mapper’s intermediate result
nbGB Group-by dimension number
DVi the ith distinct value
nbm mapper number
nbnode worker node number
N

nbm
block size

S query’s selectivity
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the mapper is nished, it serializes the mapper’s output. Therefore, the cost of this
procedure is estimated as:

Cw = Cd · sizem + Cm + Cs · sizerslt
Similarly, let’s assume that the de-serialization cost is proportional to sizem, and the
cost of serializing the intermediate result generated by a mapper is proportional to
sizerslt by assumption.

The closure consists of de-serializing the mappers’ outputs and executing the user-
de ned reducer. The de-serialization is run over all the records ltered by user-
de ned conditions in the query. Therefore, we know the total record number con-
tained in all intermediate outputs to be serialized is equal to the number of all the

ltered records: N × S, (S represents the query’s selectivity). Thus, we estimate the
closure cost as below:

Ccl = Cd ·N · S + Cr

The communication cost is composed of two parts. One is the cost of sending
mappers from the master node to worker nodes; the other is that for worker nodes
sending intermediate output to the master node. The size of messages and the net-
work status are two factors considered in this cost estimation. Thus, we estimate the
communication cost as:

Ccmm = Cn · (nbm · sizem +N · S)

The estimations of Cm and Cr are related to various applications. In the
MapReduce-based initial implementation, the mappers perform ltering operations.
They rst load the data block from the disk into the memory, and then lter loaded
data with condition de ned in the query. For the mappers used in initial implemen-
tation, the cost estimation of the Cm is as follows:

Cm =
N

nbm
· (Cl + Cf · S)

The reducer aggregates over the records ltered by mappers. It concerns the number
of records that it processes. We estimate the reducer’s cost as below:

Cr = N · S · Ca

With the mapper and reducer’s cost estimation, we obtain the total cost estimation of
the initial implementation. We consider that mapper object size is small compared
with the intermediate outputs, and it can be ignored when the dataset is large; the
costs concerning mappers’ mapping, serialization, de-serializations and transmission
can be removed. Thus, the estimation as below is obtained:

Ci =
N

nbm
·(Cl+Cf ·S)+Cs ·sizerslt+(Cd+Ca+Cn) ·N ·S (1)
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6.6.2 MapCombineReduce model-based implementation

For MapCombineReduce-based optimization of multiple-group-by query, the total
cost is considered to be composed of:

• Mapper’s start-up (on master), denoted as Cm
st ;

• Cost spent on one worker executing a mapper, denoted as Cm
w ;

• Combiners’ start-up (on master), denoted as Cc
st;

• Cost spent on one worker executing a combiner, denoted as Cc
w;

• Closure (on master), denoted as Ccl;

• Communication, denoted as Ccmm.

The start-up of mappers is similar to that of MapReduce; we mark two superscripts
m and c in order to distinguish mapper’s start-up from combiner’s start-up:

Cm
st = (Cmpg + Cs · sizem) · nbm

The mappers do the same calculations as in the initial implementation. However, the
output size of each mapper is estimated as 0, because the mapper stores the selected
records into the worker’s memory and returns null. Thus, the cost for running a
mapper is estimated as below:

Cm
w = Cd · sizem + Cm + 0

where

Cm =
N

nbm
· (Cl + Cf · S)

The combiner’s start-up is similar to the mapper’s start-up; however, the number of
combiners is equal to the number of worker nodes, in that the combiners collect the
intermediate data from all the worker nodes, so one combiner per worker node is
suf cient. Thus, the combiner’s start-up cost is estimated as below:

Cc
st = (Cmpg + Cs · sizec) · nbnode

The combiner’s execution over one worker node can be estimated similarly as in the
estimation of the mapper’s execution. However, the size of the combiner’s result can
be precisely estimated as

∑nbGB

i=1 DVi, which is the result size of pre-aggregations on
any worker node. Thus, we have the following estimation for combiner’s execution
cost:

Cc
w = Cd · sizec + Cc + Cs ·

nbGB∑
i=1

DVi

where the combiner’s cost is estimated as:

Cc =
N

nbnode
· S · Ca
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The closure includes the de-serialization of the combiners’ output and the cost of
reducer:

Ccl = Cd ·
nbGB∑
i=1

DVi · nbnode + Cr

where the reducer’s cost is estimated as:

Cr = nbnode ·
nbGB∑
i=1

DVi · Ca

As an additional combiner is added, the communication cost’s estimation is corre-
spondingly modi ed:

Ccmm = Cn · (nbm · sizem + nbnode · sizec +
nbGB∑
i=1

DVi ∗ nbnode)

The following estimation of total cost is obtained after ignoring the mapping,
serialization/de-serialization and transmission cost of mappers and combiners:

Co =
N

nbm
· (Cl + Cf · S) + N

nbnode
∗ S · Ca+

(Cn + Cd + Ca) · nbnode ·
nbGB∑
i=1

DVi + Cs ·
nbGB∑
i=1

DVi (2)

6.6.3 Comparison of implementations

Comparing the equations (1) and (2), we can see that the optimized implementa-
tion surpasses the initial one in two aspects. First, it decreases the communication
cost by reducing it from the scale of N × S to nbnode · ∑nbGB

i=1 DVi. Second, a
part of aggregating calculations is parallelized over worker nodes. We call the ag-
gregation parallelized over worker nodes pre-aggregation. The aggregating phase’s
calculation in initial implementation had a scale of N × S, and it is reduced to
( N
nbnode

· S + nbnode ·
∑nbGB

i=1 DVi) in the optimized implementation. However, an-
other part of aggregation (post-aggregation) is inevitably to be done by master node;
fortunately, the post-aggregation is small relative to the whole aggregation.

A disadvantage of the optimized implementation can be observed. A part of the
cost is increased with the growth in worker node number, including communication
cost. With this knowledge, the compression of intermediate output is considered to
be important.
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6.7 Concluding remarks

In this chapter, we rst introduced the data explorer background of this work
and identi ed the Multiple Group-by query as the elementary computation to be
parallelized under this background. Then we described why we chose GridGain
over Hadoop as the MapReduce framework in our work. We used GridGain as the
MapReduce supporting framework because of its low latency. A detailed work ow
analysis of the GridGain MapReduce procedure has been done. We realized two
implementations of Multiple Group-by query based on MapReduce, initial and opti-
mized implementations. The initial implementation of the Multiple Group-by query
is based on a direct realization, which implemented the ltering phase within map-
pers and the aggregating phase within the reducer. In the optimized implementation
of the Multiple Group-by query, we adopted a combiner as a pre-aggregator, which
does the aggregation (pre-aggregation) on a local computing node level before start-
ing the reducer. With such a pre-aggregator, the amount of intermediate data trans-
ferred over the network is reduced. As GridGain does not support a combiner com-
ponent, we constructed the combiner through merging two successive GridGain’s
MapReduces. The experiments were run on a public academic platform named
Grid’5000. The experimental results showed that the optimized version has better
speed-up and better scalability for reasonable query selectivity. At the end of this
chapter, a formal estimation of execution time is given for both implementations.
A qualitative comparison between these implementations was presented. Accord-
ing to the qualitative comparison, the optimized implementation has decreased the
communication cost by reducing the intermediate data; it has also reduced the aggre-
gating phase’s calculation by parallelizing a part of aggregating calculations. These
estimations are also a valuable reference for other MapReduced applications.





Chapter 7

Multi-dimensional data analysis
optimization

7.1 Introduction

In this chapter, we will present some methods to improve the performance of
MapReduce-based Multiple Group-by query processing [Pan et al., 2010c,Pan et al.,
2010a, Pan et al., 2010b]. In a distributed shared-nothing architecture, like the
MapReduce system, there are two approaches to optimize query processing. The

rst one is to choose optimal job-scheduling policy in order to complete the calcu-
lation within minimum time. Load balancing, data skew, straggler node etc. are the
issues involved in job-scheduling. The second approach focuses on the optimization
of individual jobs constituting the parallel query processing. Individual job opti-
mization needs to consider the characteristics of involved computations, including
the low-level optimization of detailed operations. The optimization of individual
jobs sometimes affects the job-scheduling policy. Although the two optimizing ap-
proaches are at different levels, they in uence each other. In this chapter, we will

rst discuss the optimization work for accelerating individual jobs during the par-
allel processing procedure of the Multiple Group-by query. Then, we will identify
the performance affecting factors during this procedure. The performance measure-
ment work will be presented. The execution time estimation models are proposed
for query executions based on different data partitioning methods. An alternative
compressed data structure will be proposed at the end of this chapter. It enables one
to realize more exible job scheduling.

7.2 Data-locating based job-scheduling

GridGain is a Multiple-Map-One-Reduce framework. It provides an automatic
job-scheduling scheme, which assumes all nodes are equally suitable for executing
a job. Unfortunately, that is not the case in our work. We provide a data-locating
job-scheduling scheme. This scheme can be simply described as sending a job to
where its input data is.

135
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7.2.1 Job-scheduling implementation

Our job-scheduling implementation helps the mapper to accurately locate data par-
tition. This is especially important in case of no existence of data redundancy. One
wrong mapping will cause computational errors. With the data placement procedure
performed during data restructuring, this job-scheduling scheme is converted to a
data location issue. We utilize the user-de nable attribute mechanism provided by
GridGain to address this issue. For example, we add a user-de ned attribute “frag-
ment” to each worker’s GridGain con guration, and attribute it a value representing
the data partitions’ identi ers that it holds. When the worker nodes’ GridGain in-
stances are started, the “fragment” attribute is visible to the master node’s GridGain
instance and the other worker nodes’ GridGain instances. It is used to identify the
right worker node.

In the case of horizontal partitioning, worker node identi ers (i.e. hostnames) are
utilized to locate data partitions. In this case, an equal number of partitions is placed
on each worker node. The partitions containing successive records are placed over
one worker node. That is, partitions are distributed on worker nodes in a sequential
order. Then, the identi er of the worker node is used as the identi er of the data
partitions that it holds. In this way, worker node identi ers are used to locate data
partitions. For example, assuming that ROWSET is horizontally divided into ten
partitions, these partitions are placed over ve worker nodes. Thus, worker node A
holds partitions one, two; worker node B holds partitions three, four, and so on. In
this scenario, ten mappers need to be dispatched. As partitions one and two locate
on worker node A, then mappers one and two are sent to worker node A. The rest of
mappers are scheduled in the same way.

In case of vertical partitioning, a user-de ned attribute, “region identi er” is uti-
lized to locate data partitions. When a worker node number is small (case of one
region), vertical partitions are replicated across all worker nodes. When a worker
node number is large, further vertical partitions are horizontally divided into regions.
Worker nodes are re-organized into regions accordingly. The worker nodes of the
same region have the same “region identi er.” Partitions are replicated across worker
nodes within the same region. Thus, the region identi ers of worker nodes are uti-
lized for data partitions. As an example, 13 vertical partitions from ROWSET, hav-
ing 10,000,000 records, are horizontally divided into two regions. The records 1 to
5,000,000 are put in region one, and the records 5,000,001 to 10,000,000 are put in
region two. Ten worker nodes are re-organized into two regions accordingly, each
containing ve worker nodes. Ten mappers aggregate over ve different dimensions
in two different regions respectively. For load balancing reasons, we use round-robin
policy within regions to keep the job number running over each worker as balanced
as possible.

7.2.2 Two-level scheduling

We actually realize two-level scheduling in MapReduce computations, i.e. task-
level scheduling and job-level scheduling. Task-level scheduling means dispatching
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each mapper to the corresponding worker node. It considers how to distribute map-
pers, and ignores the calculation details within each job (mapper). Several elements
should be considered in the task-level scheduling, such as mapper number, worker
node number, and load balancing. In order to achieve load balancing, it is necessary
to take into account worker node performance and status, and the input data location,
etc. Because one job is run on one worker node, job-level scheduling takes place
within a worker node, since one job runs on one worker node. Job-level scheduling
considers the organization of calculations within a mapper. The main calculations
can be encapsulated in reusable classes, and stored in a local jar le on each worker.
The mapper calls the methods of these classes to run those calculations. Job-level
scheduling is closely related to calculations that a job should execute. For this reason,
the job-level scheduling should be tuned according to different queries; on the con-
trary, the task-level scheduling could be unchanged or slightly changed for different
queries. Our mapper job de nitions can be considered as a job-level scheduling.

7.2.3 Alternative job-scheduling schemes

An alternative job-scheduling scheme is to perform the ltering phase on the mas-
ter node and the aggregating phase over worker nodes. This job-scheduling scheme
is feasible since the restructured data allows loosely coupled computations. In the
preceding implementation, the ltering phase and the aggregating phase are not sep-
arable, since aggregating phase computations consume ltering computations’ out-
put. With restructured data, we can see that the computations of these two phases are
clearly decoupled, since they use different les as input data. In the ltering phase, a
search operation is performed via accessing only inverted index les (Lucene gener-
ated les). In the aggregating phase, aggregation is performed over ltered records
identi ed by a list of recordID calculated by ltering phase, and it only needs to
access the compressed data les (FactIndex and Fact les). As these two phases are
decoupled, they can be scheduled and optimized separately, which provides more

exibility for job-scheduling. This is especially helpful in case of vertical parti-
tioning, where the selected recordIDs are commonly usable for multiple dimension
aggregations.

7.3 Improvements by speed-up measurements

We evaluated our MapReduce-based Multiple Group-by query over restructured
data in a cluster of Grid’5000 located in Orsay site1. Also, we used the version of
GridGain 2.1.1 over Java 1.6.0. The JVM’s maximum of heap size is set to 1536MB

1The cluster located in the Sophia site had unfortunately retired after doing our rst part of experiments.
The currently chosen cluster has the same hardware con guration as the retired Sophia cluster.
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on both master node and worker nodes. We ran our applications over 1 to 15 nodes.
Although the worker nodes were small-scaled, the ROWSET processed in these ex-
periments is not extremely large, and it ts well with the amount of nodes used in
our work. ROWSET was composed of 10,000,000 records with each including 15
columns. The size of ROWSET was 1.2 GB. We partitioned the dataset with both
horizontal partitioning and vertical partitioning. All the partitions had already been
indexed with Lucene and compressed before launching the experiments.

We chose queries having different selectivity. Selectivity is a factor that controls
the amount of data being processed in the aggregating phase. Four Multiple Group-by
queries’ selectivities are 1.06%, 9.9%, 18.5% and 43.1% respectively. These queries
all had the same ve Group-by dimensions. Before starting the parallel experiments,
we ran a group of sequential versions for each of these queries and measured the
execution times, which were used as the baseline of the speed-up comparison.

7.3.1 Horizontal partitioning

Under the horizontal partitioning, we partitioned the ROWSET with different
sizes. We ran, concurrently, different numbers of mappers over each worker node
in different experiments. Thus, we could compare the performance of running a
few big-grained jobs per node against that of running multiple small-grained jobs
on one node. Our experiments with the horizontal partitioning-based implementa-
tion was organized in four groups. In the rst group, there was only one mapper
being dispatched to a worker node and run on it. In the second group, two mappers
were running on one worker node. In the third group, we ran ten mappers on each
worker node, and in the fourth group, twenty mappers per worker node. The Fig-
ure 7.1 shows the speed-up performance of the MapReduce-based Multiple Group-
by query over horizontal partitions. We also realized a MapCombineReduce-based
implementation. The MapCombineReduce-based implementation was for the case
where more than one mapper was running on one node. The combiner performed the
same computations as the reducer. The Figure 7.2 shows the speed-up performance
measurement of the MapCombineReduce-based multiple Group-by aggregation over
horizontal partitions.

Observation and comparison. For the MapReduce-based implementation, the
rst observation of the speed-up measurement is that the queries with high selec-

tivity shows better speed-up performance than the queries with low selectivity. A
query with a certain selectivity has a xed workload of calculation. Some parts of
this workload are parallelizable, but others are not. The reason the high selectivity
queries have better speed-up performance is that the parallelizable portion in their
workload is greater than that in the low selectivity queries. The second observation is
the speed-up performances of smaller job number per node (one and two jobs/node)
experiments surpass that of bigger job number per node (ten and twenty jobs/node)
experiments. Multiple jobs concurrently running over one node were considered to
be able to utilize the CPU cycles more ef ciently, and run faster. But in reality, this
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FIGURE 7.1: Speed-up of MapReduce Multiple Group-by query over horizontal
partitions.
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FIGURE 7.2: Speed-up of MapCombineReduce Multiple Group-by query over hor-
izontal partitions.
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is not always true. We will discuss the issue of multiple jobs concurrently running
on one worker node later in this chapter.

The speed-up of MapCombineReduce-based implementation is similar to that of
the MapReduce-based one. Comparing these two implementations, we can see that
the speed-up performance of MapReduce-based implementation is better than that of
the MapCombineReduce-based one in the experiments of small job number per node.
In contrast, for experiments of big job number per node, the MapCombineReduce-
based implementation speeds up better than the MapReduce-based one. That is due
to the necessity of the combiner for different job number per node. For the job
number per node, smaller or around the CPU number per node (e.g. one and two),
the pre- nal-aggregation (combiner’s work) is not necessary, in that the number of
intermediate outputs is not big. On the contrary, when the number of jobs per node
is big (e.g. ten and twenty), the combiner is necessary. In this case, the speed-up of
MapCombineReduce-based implementation is slightly better than the MapReduce-
based implementation.

7.3.2 Vertical partitioning

Under vertical partitioning, we dispatched the vertical partitions using the policies
described in Section 4.4.3. Similarly, we realized a MapReduce based implementa-
tion and a MapCombineReduce based one and measured the speed-up performance
for both. During the experiments, we increased the number of worker nodes from 1
to 15, and divided the experiments into three groups. In experiments of group one,
we had a small worker node number, denoted as w, w ∈ [1..5]; we organized vertical
partitions into one region. If we note region number as nbr, then nbr = 1. In this
case, each mapper aggregates over one entire Group-by dimension. Thus, in case
of one region, the number of mappers is equal to the number of Group-by dimen-
sions (nbm = nbGB = 5). In the second group of experiments, we increased the
number of region to two (nbr = 2) in order to utilize up to ten worker nodes. We
ran the queries over 2, 4, 6, 8 then 10 worker nodes (i.e. w ∈ [2, 4, 6, 8, 10]), and
measured the execution time in the case of each vertical partition being cut into two
regions. As the number of the mappers equals the number of partitions, then we have
nbm = nbGB ·nbr = 10. In the third group of experiments, we increased the number
of regions to three, i.e. nbr = 3. We had worker nodes number w ∈ [3, 6, 9, 12, 15]
in different experiments. The number of mapper nbm = 15. The mappers were
evenly distributed within each region.

As we xed the Group-by dimension number at ve, the total mapper number was
5 × nbr, and the number of mappers per node was varied with the node number
per region: nbjob/node =

⌊
5/nbnode/region

⌋
or
⌈
5/nbnode/region

⌉
. For example, if

nbnode = 1, nbr = 1, then each node was assigned ve mappers; if nbnode = 10,
nbr = 2, then each node was assigned one mapper; if nbnode = 2, nbr = 1, then
one node was assigned two mappers, the other three mappers, etc. We illustrate the
speed-up performance measurements in the Figure 7.3.



142 Cloud Computing: Data-Intensive Computing and Scheduling

FIGURE 7.3: Speed-up of MapReduce Multiple Group-by aggregation over
vertical partitions. MapReduce-based implementation is on the left side.
MapCombineReduce-based implementation is on the right side.
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Observation and comparison. As shown in Figure 7.3, the speed-up is increasing
with the rise in worker number regardless of the number of regions. The MapReduce-
based implementation speeds up better than the MapCombineReduce-based one, be-
cause the number of jobs per node is small (i.e. < 5). The queries with bigger
selectivity, like 9.9%, 18.5%, 43.1%, bene t more from the parallelization than the
queries with smaller selectivity, like 1.06%.

For most queries, the biggest speed-up appears in the third group of experiments
with three regions, for both the MapReduce-based and MapCombineReduce-based
implementations. Comparing the speed-up under vertical partitioning and that un-
der the horizontal partitioning, we can see the best speed-up appears in experiments
under the vertical partitioning. Under vertical partitioning, each mapper aggregates
over one dimension only; the obtained intermediate output is the aggregates of one
dimension. The size of the intermediate outputs using vertical partitioning is much
smaller than those using the horizontal partitioning. Imagining a scenario where
10 worker nodes are available, under horizontal partitioning, one mapper works on
one horizontal partition on one worker node. As each mapper aggregates over 5 di-
mensions, then, the number of intermediate aggregate tables from all the mappers
are 10 × 5 = 50. Under vertical partitioning, 10 available workers are organized
into 2 regions. Also, there are in total 10 mappers. But each mapper aggregates
over one dimension. Thus the number of intermediate aggregate tables is exactly the
same as the number of mappers, 10. If we simply suppose that an aggregate table
of an arbitrary Group-by dimension is of size 20K, then 1,000K intermediate output
is generated under horizontal partitioning, while 200K intermediate output is gen-
erated under vertical partitioning. Thus, with vertical partitioning, the intermediate
data volume to be transferred is reduced with regard to the experiments using the
horizontal partitioning.

7.4 Improvements by affecting factors

In this section, we will discover the performance affecting factors in the Multiple
Group-by query processing. Some of them concern the computations themselves,
others are related to exterior conditions, such as hardware, network, etc. Discovering
these factors is helpful in locating the bottlenecks, and in turn increasing the system
ef ciency. The performance affecting factors addressed in this section include query
selectivity, running multiple jobs over one worker node, hitting data distribution, in-
termediate output size, serialization algorithms, network status, combiner utilization
as well as data partitioning methods.



144 Cloud Computing: Data-Intensive Computing and Scheduling

7.4.1 Query selectivity

Query selectivity is a factor that controls the records ltered out during the select-
ing phase. Also, it determines the amount of data that the aggregating phase should
process. For big selectivity, query aggregating phase takes up a majority of the whole
calculation. In addition, the aggregating calculation is parallelizable. Thus the query
with big selectivity bene ts more from the parallelization than query with small se-
lectivity. Query selectivity is sometimes related to workload skew. In some particular
cases a query selects a lot of records from some partitions, but very limited records
from the other partitions. Therefore, most aggregate operations are performed only
on a part of worker nodes, while the other nodes remain idle, which causes the work-
load skew. This happens more frequently with range data partitioning than in other
cases.

7.4.2 Side effects

In our experiments, we ran a different number of mappers on each worker node
so as to measure different effects for acceleration. Intuitively, the more mappers
concurrently running on one worker node, the more ef ciently the CPU(s) should
be utilized. However, the mappers’ run is degraded when contentions are provoked.
More importantly, this retards the execution of the reducer, since the reducer does not
start until all mappers have been nished. Thus, from the point of view of the whole
query processing, running multiple mappers on one worker node may degrade the
performance of individual mappers. This will in turn degrade the whole MapReduce
procedure. Table 7.1 shows a list of average execution times of one individual map-
per when multiple mappers run concurrently on one node. The workload of each
mapper was as follows: searching in the inverted index to lter the data partition
and obtaining a list of recordIDs with the records associated satisfying the WHERE
condition; aggregating over one vertical partition. The total record number of the
partition is 3 333 333, and the number of records selected out accounts for 1% of the
total records. These mappers were executed on one same worker node.

Table 7.1: Average Execution Time of Multiple Mappers’ Jobs on One Node.
Job number One Mapper’s

on Average Execution
one node time (ms)

1 170
2 208
3 354
4 417
5 537
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These mappers are concurrently running as different threads. They do not com-
municate among each other, and they have different inputs and outputs. This means
that each mapper will bring new input data into the memory and generate its output
data. The workload of data aggregation is typically data-intensive, and contentions
may occur in different resources, such as the contentions of disk I/O or memory
bandwidth. As shown in this table, when running only one mapper over one worker
node, the execution time is relatively small (170 ms). When concurrently running 2
mappers over one worker node, the average execution time of one individual mapper
is slightly drawn out (37 ms longer). When concurrently running 3 or more mappers
over one worker node, the execution time shows a relatively long delay (from 184
ms to 367 ms). We can see that, on one worker node with 2 CPUs, having 2 con-
currently running mappers, the average execution time is the most interesting. After
that, when we continuously increased the number of mappers on the worker node,
the more mappers concurrently running on one worker node, the longer the time an
individual mapper takes.

7.5 Improvement by cost estimation

In this section, we give a cost estimation model for the execution time during the
whole MapReduce-based query processing on the restructured data. For the sake of
time limitation, we worked only on the cost estimation for the MapReduced-based
implementation, and the cost estimation for MapCombineReduce-based implemen-
tation is not addressed in this work. The above-mentioned performance affecting
factors and observation based on our experiments are maximally considered for con-
structing the cost estimation model.

We still consider the four factors of cost in a MapReduce procedure, start-up,
mapper execution, closure and communication. In start-up, the master prepares the
mappers, including mapping mappers to available worker nodes, then serializing
mapper objects. The serialization for the rst mapper object takes longer than the
serializations for the other mapper objects. The formal cost estimation for start-up is
as follows:

Cst = Cmpg · nbm + Cs · sizem + C ′s · (nbm − 1) · sizem
If there is no additional speci cation, the notations used in the formulas of this

chapter can be referred to in Table 6.1. In the above formula, we estimate the cost of
computing the mappings as Cmpg · nbm, the serialization time for the rst mapper
object as Cs · sizem, the serialization time for the rest of mapper objects as Cs ·
(nbm − 1) · sizem

When a worker receives a message from the mapper, it de-serializes the mapper
object, then executes mapper job. When nished, it serializes the aggregate table
produced by the mapper. Taking into account the factor of running multiple mappers
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on one worker node, we add a function of mapper number per node (denoted as
f(nbm/node)) into the estimate. Thus, the execution time of this process is estimated
as:

Cw = f(nbm/node) · (Cd · γ · sizem + Cm + Cs · sizeagg)
Here, γ · sizem, (γ > 1) is used to represent the size of the serialized mapper
object. A serialized object is always bigger than the original one, so, we have γ > 1.
Also, γ varies according to the composition of the object. The notation sizeagg
means the size of the generated aggregate table. The mapper execution cost, Cm, and
aggregate table size, sizeagg , vary according to the adopted partitioning methods.
We will respectively give the detailed estimations for the horizontal partitioning-
based implementation and the vertical partitioning-based one at a later stage.

The closure includes de-serialization of the intermediate aggregate tables and user-
de ned reducer execution. We estimate the closure cost as below:

Ccl = Cd ·
nbm∑
i=1

γ · sizeagg i + Cr

where the reducer cost (denoted as Cr) varies with different applications. We will
give the estimation of reducer later.

In our work, the data communication is composed of the master node sending
mappers to the worker nodes, and worker nodes sending intermediate aggregate ta-
bles to the master node. Considering the size of transmitted data and the network
status we estimate the communication cost as:

Ccmm = Cn · (nbm · γ · sizem +

nbm∑
i=1

γ · sizeagg i)

where sizeagg i represents the size of the ith aggregate table produced by mappers.

7.5.1 Horizontal partitioning

For the implementation over horizontal partitions, the mapper takes a horizontal
partition as input data, searches in its Lucene index, reads values of dimensions
and aggregates with measures over the distinct values of Group-by dimensions. We
assume there are D dimensions and M measures in ROWSET, over which we run
the query aggregating on nbGB Group-by dimensions. The mapper cost is estimated
as below:

Cm = S · N

nbm
· {α · Cf + β · (nbGB + 4M) · Crd + nbagg · nbGB · Ca}

where Cf estimates the average execution time for successfully obtaining one recor-
dID of the selected records by searching Lucene index; Crd represents the execution
time to retrieve 1 byte from the compressed le; nbagg means the number of aggre-
gate functions de ned in the query. A distinct value is represented as an integer (i.e.
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distinct value code) of size 1 byte2, and a measure value as a oat sized 4 bytes. As
mentioned before, record ltering and record reading operations are impacted by hit-
ting data distribution issues, which means the average time for processing one unit of
data is varying with query selectivity. Therefore, two parameters α and β are applied
over the corresponding items. Their values vary with different queries.

Under horizontal partitioning, each mapper produces aggregate tables for all
Group-by dimensions. The size of the aggregate table can be estimated as follows:

sizeagg =

nbGB∑
i=1

nbDVi
· (1 + 4nbagg)

where nbDVi
represents the number of distinct values of the ith Group-by dimension.

1 + 4nbagg is the number of bytes contained in one row of the aggregate table.
As the reducer takes all intermediate outputs of mappers as input and performs

aggregation over them, we estimate cost of the reducer as:

Cr = Ca · nbagg · nbm ·
nbGB∑
i=1

nbDVi
(1)

With this detailed estimate, we ignore the function f(nbm/node), since we address
the small job per node cases, which are the most common cases. Thus, we obtain the
total execution time estimate of the horizontal partitioning-based Multiple Group-by
query as below:

Costhp = Cmpg · nbm + Cs · sizem + C′s · (nbm − 1) · sizem + Cd · γ · sizem+

S · N

nbm
· [α · Cf + β · (nbGB + 4M) · Crd + nbagg · nbGB · Ca]+

Cs ·
nbGB∑

i=1

nbDVi · (1 + 4nbagg) + Cd · nbm ·
nbGB∑

i=1

nbDVi · (1 + 4nbagg)

+Ca · nbagg · nbm
nbGB∑

i=1

nbDVi + Cn · nbm · γ · sizem + Cn · γ ·
nbm∑

i=1

sizeSaggi

If we note the average size of the serialized aggregate table as γ ·∑nbGB

i=1 nbDVi
·

1 + 4nbagg . We estimate the value of parameters as described in table 7.2. As it
is dif cult to accurately estimate the serialization/de-serialization execution time for
a unit of data, we estimate the serialization/de-serialization time for the data really
used in our experiments. Therefore, the estimated values for these parameters are
accompanied by the size of data being serialized or de-serialized.

In order to test the accuracy of our execution time estimation model, we com-
pare the speed-up curve calculated from our model to the measured speed-up curve.

2In our work, the distinct value number of any dimension is smaller than 256, thus, 1 byte is suf cient to
represent all the distinct value codes in integers of any dimension.
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Table 7.2: Parameters and Their Estimated Values (in ms).

Notation Estimated value Cost for...
Cmpg 2.34× 10−1 creating a mapping between

mapper and a worker node
Cs · sizem 83.51 serializing rst mapper instance
C′s · sizem 1.21 serializing non- rst mapper instance
Cd · γ · sizem 2.45 de-serializing mapper
Ca in mapper 0 aggregation, ignorable, since we use

small number aggregate functions
(only 2) in our work; aggregate
operation is right after retrieving
the operand.

Ca in reducer 0.001 aggregating in reducer
Cs 6.67× 10−3 serializing one byte of aggregate

table on average in mapper
Cd · γ 5.0× 10−3 de-serializing for one byte of aggregate

tables on average in reducer
Cn · γ · sizem 0.403 transmitting one mapper
Cn · γ 8.82× 10−4 transmitting one byte of aggregate table
For query selectivity = 1.06%
α · Cf 7.24× 10−4 ltering per record on average
β · Crd 4.33× 10−4 reading one byte from compressed data
For query selectivity = 9.9%
α · Cf 1.15× 10−4 ltering per record on average
β · Crd 7.20× 10−5 reading one byte from compressed data
For query selectivity = 18.5%
α · Cf 5.30× 10−5 ltering per record on average
β · Crd 7.60× 10−5 reading one byte from compressed data
For query selectivity = 43.1%
α · Cf 5.30× 10−5 ltering per record on average
β · Crd 7.60× 10−5 reading one byte from compressed data
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FIGURE 7.4: Measured speedup curve versus a modeled speedup curve for
MapReduce-based query on horizontal partitioned data, where each work node runs
one mapper.

Figure 7.4 shows two speed-up curves for MapReduce-based query processing on
horizontal partitions, with the number of worker nodes gradually increasing from 1
to 15. We chose the case with only one mapper concurrently running on a worker
node. In this case, the application related parameter can be determined, such as,
total record number N=10,000,000, aggregate function number nbagg = 2, total dis-
tinct values number

∑nbGB

i=1 nbDVi
= 511, Group-by dimension number nbGB = 5,

measure values contained in one record M = 2, etc.

7.5.2 Vertical partitioning

We also estimate the cost of the implementation under the vertical partitioning in
a similar way. The mapper cost is estimated as:

Cm = S · N

nbrgn
· [Cf + (4M + 1) · Crd + Ca · nbagg]

where nbrgn means the number of regions.
With vertical partitioning, each mapper aggregates over one dimension d then the

intermediate aggregate table size is estimated as:

sizeaggd = nbDVd
· (1 + 4nbagg)

where, nbnbDVd
means the distinct value number of current Group-by dimension d;

(1 + 4nbagg) is the estimated size in byte of each row in aggregate table.
The reducer aggregates over a list of aggregate results; each of them is the aggre-

gate result of one dimension or part of dimension in the case of nbrgn > 1. The
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estimation of the reducer is:

Cr = Ca · nbrgn · nbagg · γ ·
nbGB∑
i=1

nbDVi
(2)

By summing up the above estimations, we obtain the total cost estimate of Multiple
Group-by query processing over vertical partitions:

Costvp = Cmpg · nbm + Cs · sizem + Cd · γ · sizem+

S · N

nbrgn
· [Cf + (4M + 1) · Crd + nbagg · Ca]+

Cs · nbDVd
· (1 + 4nbagg) + Cd · γ · nbrgn ·

nbGB∑
i=1

nbDVi
· (1 + 4nbagg)+

Ca·nbrgn·nbagg
nbGB∑
i=1

nbDVi
+Cn·(nbm·γ·sizem+γ·nbrgn·

nbGB∑
i=1

nbDVi
·(1+4nbagg)

Here we replaced
∑nbm

i=1 sizeaggi by nbrgn ·∑nbGB

i=1 nbDVi
· (1 + 4nbagg) since

the partial aggregate tables from different regions effectively construct nbrgn times
aggregates for all Group-by dimensions. The same estimation for parameter values
could also be done for vertical partitioning base query processing. We will have this
done in the future work.

7.5.3 Comparison of partitioning

Note that, for the same ROWSET partitioned horizontally and vertically, the num-
ber of partitions in horizontal partitioning is larger than the number of regions in ver-
tical partitioning, that is, HP.nbpttn > V P.nbrgn. The reason is that in horizontal
partitioning, the partition number is equal to mapper number, and we let the mapper
number equal a multiple of the node number, so as to utilize all the available nodes.
However, with vertical partitioning, the region number is usually a sub-multiple of
the nodes number. Given this established fact, HP.nbpttn > V P.nbrgn, we see that
the reducer cost of vertical partitioning-based implementation, which is expressed
in formula (1), is smaller than that of the horizontal partitioning-based one, which is
expressed with formula (2). As shown by the estimation, under both horizontal parti-
tioning and vertical partitioning, a great part of calculation is parallelized. We do the
calculation, reduced from scale of ROWSET size N to fragment size N

nbm
(in case of

horizontal partitioning) or N
nbrgn

(in case of vertical and hybrid partitioning). How-
ever, the transfer and serialization/de-serialization of intermediate data still forms an
important part of the cost. This cost results from parallelization. On the contrary, we
can imagine that a further compression of mappers for intermediate outputs could
optimize the calculation.
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7.6 Compressed data structures

In the previous work, we used a data partition locating policy as the job-scheduling
policy. Although this worked well, we still need a more exible job-scheduling pol-
icy. An imaginable job-scheduling policy is based on distinct values. That means,
each mapper works to aggregate only one or a part of distinct values of one certain
dimension, then the intermediate aggregate tables produced by the mappers are as-
sembled in the reducer. To support such a distinct-value-wise job scheduling, we
propose an alternative compressed data structure in this section. This data structure
works with vertical partitioning.

7.6.1 Data structure description

In order to facilitate distinct-value-wise job scheduling, we need to be able to
calculate the aggregate value of one distinct value within one continuous process.
Thus, if the measure values corresponding to the same distinct value are succes-
sively stored, then aggregation for one distinct value can be processed in a contin-
uous mode. This is the basic idea of the new compressed structure. In this new
compressed data structure, we regroup the measure values’ storage order. Measures
corresponding to the same distinct value are stored together successively. As the
stored order of measures is different than in the original ROWSET, we provide a
data structure recording the records’ former positions in the original ROWSET. Re-
lying on the above description, we design the compressed data structure as follows.
To be noted, this structure is designed speci cally for vertical partitioning. The com-
pressed data is still composed of two les, FactIndex and Fact. For each distinct
value, Fact le stores a recordID-list with each recordID indicating the former posi-
tion of records containing the current distinct value. It then stores a set of measures
containing the current distinct value. FactIndex stores for each distinct value, the
distinct value code, and an address pointing to a position in the Fact le where the
recordID-list and a set of measures covered by the current distinct value start to store.
Figure 7.5 illustrates this structure.

For aggregating using this data structure, each mapper will be scheduled to aggre-
gate over one distinct value. FactIndex le is accessed to obtain the given distinct
value’s storage position in the Fact le. Then, the mapper identi es the selected
records covered by the given distinct values by retrieving the common recordIDs of
selected recordID-list from the ltering phase and the recorID-list retrieved from the
Fact le. Finally, the selected records covered by the current value are aggregated
using the measure values covered by current distinct value retrieved from the Fact

le.
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FIGURE 7.5: Compressed data les suitable for distinct value level job scheduling
with measures for each distinct value stored together.

7.6.2 Data structures for storing recordID-list

Integer Array and Bitmap are two alternative data types which can be used to
store a recordID-list. In the case of using Integer Array, each recordID is stored as
an element of the array. In the case of using Bitmap, we create a Bitmap composed
of a sequence of bits. The number of bits is equal to the cardinality of the original
ROWSET. One bit in Bitmap corresponds to one record. The value of each bit is
either 0 or 1. If we use 1 to indicate that the current record I.D. is in the current
distinct value’s recordID-list, we obtain a Bitmap with all “1” positions indicating
the whole recordID-list.

Regarding the use of storage space, Integer Array and Bitmap are very different.
When the recordID-list contains a small number of elements, Integer Array takes
smaller storage spaces. In the opposite case, where the recordID-list contains a large
number of elements, Bitmap is more storage ef cient.

7.6.3 Compressed data structures for different dimensions

Taking into account the above features, we distinguish two categories of dimen-
sions: dimensions having a small number of distinct values and dimensions having
a large number of distinct values. For those dimensions with a small number of dis-
tinct values, many records are covered by one certain distinct value. In turn, a large
number of recordIDs need to be stored. In this case, Bitmap is more space-saving
and makes access more ef cient than Integer Array. For those dimensions with a
large number of distinct values, only a few recordIDs need to be stored. For this
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FIGURE 7.6: Compressed data structure storing recordID list as an integer array for
dimensions with a large number of distinct values.

case, Integer Array is more space-saving and provides more access ef ciency.

But how to de ne the “small” and “large” over the number of distinct values for
one dimension? Let’s do a concrete calculation. Imagine that we have a ROWSET
containing 107 records. One recordID stored as an integer takes 4 bytes. Assume
that a dimension includes V distinct values. Thus each distinct value covers 107/V
records. If we store the recordID-list in Integer Array, for one certain distinct value,
4× 107/V bytes are needed, on average. Then, we need to store 4× 107/V bytes in
total in order to store all recordIDs containing all distinct values. If we use a Bitmap
to store a recordID-list of one distinct value, then the Bitmap takes 1.25× 106 bytes.
As a result, the critical point of distinct value number V is 32. If V = 32, then
two units of storage take up the same space; if V < 32, Bitmap takes up a smaller
space; if DV > 32, then Integer Array takes up a smaller space. Thus, if the number
of distinct values is larger than 32, then we consider it as “large”; otherwise, if the
number of distinct value is smaller than or equal to 32, then we consider it as “small.”
After de ning the data structure of a recordID-list, we specify the concrete storage
for those two dimensions. For dimensions having a large number of distinct values,
the composed data is composed of 2 les, FactIndex and Fact. Data stored in the
FactIndex le includes the code of each distinct value of an integer and an address
of a long integer pointing to a position in the Fact le, where the data related to this
distinct value is stored. Data stored in the Fact le includes three parts. The rst
one is an integer representing the number of records covered by the current distinct
value. The second one is an Integer Array compressed in Byte Array representing
the recordID-list for records covered by the current distinct value. The third one is
a Float Array representing the measure values for records having the current distinct
value. Refer to Figure 7.6 for the illustration of this structure.
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FIGURE 7.7: Compressed data structure storing recordID list as Bitmap for dimen-
sion with a small number of distinct values (In Java, Bitmap is implemented as Bitset)

For dimensions having a small number of distinct values, the compressed data is
also composed of a FactIndex le and a Fact le. The FactIndex le stores the code
of the current distinct value in an integer and an address in a long integer, in long
type, pointing to a position in the Fact le where data related to this distinct value is
stored. The Fact le stores, for each distinct value, a Bitmap indicating the records
covered by the current distinct value, as a Byte Array, and the measure values for
records having the current distinct value in a type of Float Array. Refer to Figure 7.7
for the illustration of this structure.

7.6.4 Bitmap sparcity and compressing

The low ef ciency of Bitmap, i.e. the second compressed data used in the above
experiments is caused by the sparcity. Even for a dimension having a small number
of distinct values, for example, 12, the Bitmap is very sparse, since only 1/12 bits are
set to 1. A Bitmap compressing is crucial to improving the storage ef ciency. There
are already some Bitmap compressing algorithms that we can take advantage of.
These methods typically employ Run-length-encoding, such as Byte-aligned Bitmap
Code, Word-Aligned Hybrid code and Position List Word Aligned Hybrid [Bitmap,
2012]. Run-length-encoding stores the sequence in which the same data value oc-
curs in many consecutive positions, namely run, as one single data value and count,
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instead of storing them as the original run [Run-length-encoding, 2012]. We will
address the Bitmap compressing methods in future work in order to improve our
Bitmap’s storage ef ciency.

7.7 Concluding remarks

In this work, we realized Multiple Group-by query on restructured data, using the
MapReduce model to parallelize the calculation. We introduced data partitioning,
indexation, and data compression processing in the data restructuring phase. The
materialized view ROWSET is partitioned using two principal partitioning methods,
horizontal partitioning and vertical partitioning, respectively. The index that we cre-
ated using Lucene over ROWSET is an inverted index, which allows rapid accessing
and ltering of the records with the WHERE condition. We measured our Multiple
Group-by query implementations over ROWSET, and compared the speed-up per-
formance of implementations over horizontally partitioned data and that of vertically
partitioned data. In most cases, they showed similar speed-up performance; however,
the best speed-up appeared in the vertical partitioning-base implementation. Based
on the measured result observations and analysis, we discovered several interesting
factors that affect query processing performance, including query selectivity, concur-
rently running mapper numbers on one node, hitting data distribution, intermediate
output size, adopted serialization algorithms, network status, whether or not using
combiner as well as the data partitioning methods. We gave an estimation model
for the query processing execution time, and speci cally estimated the values of var-
ious parameters for data horizontal partitioning-based query processing. In order
to support distinct-value-wise job-scheduling, we designed a new compressed data
structure, which works with vertical partition. It allows the aggregations over one
certain distinct value to be performed within one continuous process. However, such
a data structure is only an initial design. We will address the optimization issues, like
Bitmap compressing, in future work.





Chapter 8

Real-time scheduling with
MapReduce

8.1 Introduction

MapReduce [Dean and Ghemawat, 2008] has emerged as one of the most popular
frameworks for distributed cloud computing. The simple but powerful programming
model is bene cial to a wide spectrum of data-intensive applications such as search
indexing, mining social networks, recommendation services, and advertising back-
ends. These applications enable computing datacenter support in carrying out daily
activities as well as solving social problems. Since computing is becoming more in-
strumented, interconnected, intelligent and pervasive than ever before, it brings many
challenges in systems design, modeling and engineering. There are emerging classes
of cloud-based applications that can bene t from increasing time guarantee. For ex-
ample, real-time advertising requires a real-time prediction about user intent based
on their search histories. Meeting deadlines here can translate into higher pro ts for
the content providers. In control datacenters, enormous amounts of real-time data
need to be collected and reported periodically by various sensors. Besides that, am-
bient intelligence needs a networked database to integrate these sensor data streams
in time and to give a real-time analysis result according to event requests. Therefore,
computing in clouds, where billions of events occur simultaneously, is not in a time
linear dimension, but falls into the real-time computing category.

Real-time application is subject to a real-time constraint that must be met, re-
gardless of system load. If a real-time computation does not complete before its
deadline, it is treated as a failed case, as serious as if the computation were never
executed. Dealing with different real-time tasks on a MapReduce cluster can bene t
users sharing a common large dataset. However, the traditional scheduling schemes
need to be revised in terms of particular characteristics of MapReduce.

157
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8.2 Real-time scheduling problem

We build a real-time scheduling problem model by a triple (Γ, P,A) where Γ is
the set of real-time tasks, P the set of processing resources and A the scheduling
algorithms.

8.2.1 Real-time task

A computing task is an application taking up memory space and execution time.
The concept of task should be distinguished from event. An event emphasizes an
operation taking place at a speci c moment, while a task can be submitted, executed,
halted, suspended and returned.

For the purpose of time analysis, we de ne a real-time task by its timing character-
istics, rather than by the functionality requirements, such as execution time, lateness,
deadline, etc. The tasks to be scheduled make a task set Γ = {τ1, τ2, · · · , τn}, and
any τi consists of a periodic sequence of requests. When a request arrives, a new
instance is created. For the periodic real-tasks, several preliminary terms should be
de ned.

• Ti: period is the time between two successive instances of task τi.

• Oi: offset is the rst release of task τi.

• Ci: computation time is the worst-case execution time of τi.

• Di: deadline is the relative overdue time in one period.

In addition, τi,k denotes the kth instance of τi. There are several important instances
for τi,k, and their relationship as shown in Figure 8.1

• ai,k: activation instant at which instance τi,k is released to the scheduler.

• si,k: starting instant at which the instance τi,k starts computation.

• ei,k: execution time; it is how long instance τi,k is running

• fi,k: nishing instant at which instance τi,k nishes the execution.

• di,k: overdue instant at which instance τi,k is required to be nished.

All instances are activated after the request is submitted, so ai,k is equal to Oi +
(k − 1)Ti. The starting time si,k can not be earlier than the activation ai,k. The
total amount of execution time ei,k depends on the processing resources, but it can
not exceed the worst execution time, that is Ci = max ei,k. The execution of τi,k

nishes at fi,k, and si,k + ei,k ≤ fi,k. For most cases, the equal sign is not true,
because the scheduler might execute more than one task at the same time. Finishing
time is important, but varies with different instances. Response time of task τi is
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FIGURE 8.1: Relationship between important instants.

de ned as the maximum of nishing time Ri = max(fi,k − ai,k). The deadline
di,k is the absolute overdue time for τi,k, so di,k = ai,k + Di. The task utilization
ui = Ci/Ti shows the impact of task τi on processing resource. System utilization
is the sum of all ui, and it presents the fraction of processor time used by a periodic
task set.

U =

n∑
i=1

ui (8.1)

Since the required amount of computation power can not exceed the available re-
source, the condition U ≤ 1 must be satis ed if there are feasible scheduling solu-
tions on task set Γ.

8.2.2 Processing resource

The processing resource is the resource in charge of executing tasks. For the
sake of simplicity, we distinguish processors one from another by their computing
capability. The concrete processor types or internal architectures are ignored in this
model. Typical processing resources are

• Uniprocessor: there is only one processor in the set, and the worst-case com-
putation time depends on the size of executed tasks.

• Identical multiprocessor: the number of processors in the set is more than one,
and each of them has the same computing capability.

• Uniform multiprocessor: the number of processors in a set is more than one.
Different processors have different computing capability, but the speed of each
processor is a constant and does not depend on task type.

• Heterogeneous multiprocessor: multiprocessors are made up of different hard-
ware platforms, so the worst-case computation time depends not only on task
size, but also on task type.

Among them, the uniprocessor and the identical multiprocessor are most studied, be-
cause they are more general and easily analyzed than the multiprocessor of identical
or heterogeneous con guration. The other two cases can be extended by identical
multiprocessors. In particular, many results achieved for the uniprocessor are useful
for multiprocessor resources; we therefore focus the discussion on the uniprocessor.
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8.2.3 Scheduling algorithms

Scheduling algorithm A is the set of rules for mapping tasks from Γ onto the pro-
cessing resource P . An algorithm is preemptive if the execution of one task can be
interrupted by another task. The interrupted one is resumed later at the same location
where the task was preempted. Non-preemptive algorithms are easily implemented
because no extra overhead is needed for a context switch, but they can not promise
that all deadlines are satis ed. As a result, preemptive algorithms are applied by
real-time scheduling to handle applications with strict time requirements.

Two basic constraints should be met. A task can not be executed on two or more
processors simultaneously, and a processor can not execute on two or more tasks.
Under these premises, a feasible scheduling algorithm is that the scheduling can
make all tasks meet their deadlines. An algorithm is optimal in the sense that no
other feasible scheduling exists if the task set can not be scheduled by this algorithm.

The First In First Out (FIFO) algorithm queues tasks on a waiting list. When a new
task is submitted, scheduler puts it on the list according to its arrival time. Round-
Robin (RR) is another common scheduling algorithm. It handles all tasks without
priority, and circularly assigns a xed time unit to each task in equal portions. How-
ever, both of them perform badly in a real-time scheduling systems, which means
they often fail to match the applications’ constraints.

In the context of real-time systems, the scheduling algorithm is priority driven.
The tasks are assigned priorities according to their constraints, and generally the
highest priority is assigned to the most urgent task. When a task with low priority
encounters another task with high priority, the running one immediately hands over
the processor to the new task. Thus, the task with the highest priority is always ex-
ecuted whether the processor is occupied or not, using preemption if necessary. In
this case, a static scheduling algorithm refers to xed priority assignment. Once the
priority is xed, it never changes until the task is nished. Otherwise, the scheduling
algorithm is considered to be dynamic if the priorities of tasks might change from
time to time, although dynamic scheduling is more effective than static scheduling in
utilizing the available computational resources. Fixed priority assignment is applied
more by industry systems, owing to its ef cient implementation, simplicity, and intu-
itive meaning. For practical purposes, we will focus on the study of static scheduling
with xed priority assignment.

8.3 Schedulability test in the cloud datacenter

The schedulability test predicts temporal behavior of a given task set, and decides
whether the deadline constraints will be met at runtime, that is, the given task set can
be scheduled. Two main types are

• Suf cient test: All task sets that pass the test can meet their deadlines. How-
ever, some task sets that do not pass the test can still be scheduled by the
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processing resource.

• Exact test: A task set can be scheduled if and only if it passes the test.

In this chapter, we investigate current schedulability tests in terms of design princi-
ple, time complexity, and applicable scenario. System designers, who face a tradeoff
between test accuracy and overhead, could make a reasonable decision based on the
available computational power.

8.3.1 Pseudo-polynomial complexity

An exact schedulability test yields to a suf cient and necessary condition, but it
requires high computational complexity [Joseph and Pandya, 1986], even in the sim-
ple case where task relative deadlines are equal to periods. Lehoczky [Lehoczky
et al., 1989] studied an exact feasibility test with pseudo-polynomial complexity for
that RM priority assignment. Based on linear programming, Park [Park et al., 1995]
achieved the exact utilization bound without knowledge of exact task computation
time. Subsequently, Audsley [Audsley et al., 1993] considered a DM priority as-
signment and improved Lehoczky’s exact feasibility test by searching for worst-case
response time in an iterative manner. Lehoczky [Lehoczky, 1990] then proposed a
more general feasibility test for arbitrary deadlines. Later, methods for speeding up
the analysis of task sets were proposed [Manabe and Aoyagi, 1995,Sjödin and Hans-
son, 1998,Abdelzaher and Lu, 2001,Bini and Buttazzo, 2002,Chen et al., 2003,Bini
and Buttazzo, 2004], but the complexity of the approach always remains pseudo-
polynomial in the worst case. Here we present two seminal pseudo-polynomial com-
plexity tests.

Breakdown utilization. Breakdown utilization was rst proposed by Lehoczky
[Lehoczky et al., 1989], describing an exact characterization of an RM scheduling
algorithm. For a random task set, the computation time scales to the point at which
a deadline is rst missed. The corresponding set utilization is the breakdown utiliza-
tion U∗n. This bound is an exact bound, which provides both suf cient and necessary
conditions for a schedulability test. If the utilization of the task set is higher than
this bound, no solution exists for scheduling all the tasks on one processor. Other-
wise, the task set can be scheduled without missing any deadline. The result seems
exciting, but this breakdown utilization changes according to tasks with different pe-
riods and computation times. In other words, task set size n is not enough to make
a decision, and precise details such as computation time Ci, period Ti for every task
should be known in advance.

U∗n =
∑n

i=1 Ci/Ti

mint∈Sn

∑n
j=1 Cj�t/Tj�/t

Sn = kTj j = 1, · · · , n; k = 1, · · · , �Tn/Tj�
(8.2)

In order to characterize the average behavior, Lehoczky studied the asymptotic be-
havior of the breakdown utilization when periods and computation times are gener-
ated randomly. In particular, U∗n converges to a constant as the task set size increases,
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depending only on periods, no longer on computation times. Given task periods gen-
erated uniformly in the interval [1,B], breakdown utilization U∗n converges to.

U∗n =

⎧⎪⎨⎪⎩
1 B = 1
lnB
B−1 1 < B < 2

lnB
B
�B�+

∑�B�−1
i=2 1/i

B ≥ 2
(8.3)

and the rate of convergence is O(
√
n).

In addition, the function of U∗n with respect to B rst decreases and then increases
as B grows from one to in nity, bottoming at B = 2, which is in agreement with
Liu’s result. For uniformly distributed tasks, 0.88 is a reasonable approximation for
the breakdown utilization bound, which is much larger than Liu’s suf cient bound of
0.69.

Response time analysis. Breakdown utilization has a strict restriction that the
deadline of a task must equal the period. For tasks with deadlines no more than
periods, DM is the optimal priority assignment [Leung and Whitehead, 1982]. Aud-
sley proposed a method to estimate the actual worst response time for each task, so
the schedulability test turns out to be a trivial comparison of each task’s response
time and its deadline.

Response time is the period between task submission and execution completion.
The worst response time Ri for a task i equals the sum of its computation time Ci

and the worst interference Ii. Interference is de ned as the preemption time of higher

priority tasks (j < i), and is given by the sum of
⌈
Ri

Tj

⌉
Cj .

Ri = Ci +
∑
∀j<i

⌈
Ri

Tj

⌉
Cj (8.4)

Ri can be calculated by asymptotic iteration.

Rn+1
i = Ci +

∑
∀j<i

⌈
Rn

i

Tj

⌉
Cj (8.5)

Rn
i is the nth iteration. The iteration begins at R0

i = 0, and ends at Rn+1
i = Rn

i . If
Rn

i reaches Di before termination of convergence, iteration also halts, that is to say,
the task set is not schedulable. This analysis intends to predict the worst interference
that a task can suffer from higher priority tasks. Since the prediction formulation
does not refer to any priority assignment strategy, it is effective for both RM and DM
approaches.

8.3.2 Polynomial complexity

Response time analysis (RTA) is a popular method for schedulability analysis of
real-time tasks. Many efforts in the simpli cation of RTA have been made by reduc-
ing the number of iterations [Sjödin and Hansson, 1998, Bril et al., 2003, Lu et al.,
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2006]. Although some of them can shorten the runtime with a saving of 26–33% cal-
culation [Lu et al., 2006], all currently known algorithms still take a runtime pseudo-
polynomial in the representation of the task system. Besides that, approximation is
then applied to further reduce the time complexity of an exact schedulability test.

Fisher [Fisher and Baruah, 2006] derived a fully polynomial time approximation
scheme of the RTA. This scheme accepts two inputs, the speci cations of a task
system and a constant ε ∈ [0, 1], to examine feasibility tests. If the test returns
feasible, the task set is guaranteed to be scheduled on the processor for which it
has been speci ed. If the test returns unfeasible, the task set is guaranteed to be
unscheduled on a slower processor, the computing capacity of which is in (1 − ε)
proportion to the speci ed processor.

The number of iterations of interference calculation is limited to a constant k,
where k = �1/ε − 1. So the approximated value of Ii is

Ĩi =

{⌈
t
Ti

⌉
Ci t ≤ (k − 1)Ti

Ci +
t
Ti
Ci t > (k − 1)Ti

(8.6)

Therefore, the worst response time R̃i is calculated in O(n2k) time complexity.

R̃i = Ci +
∑
∀j<i

Ĩi (8.7)

In addition, Bini [Bini and Baruah, 2007] derived an upper bound on the response
times in polynomial time. The worst response time Ri is bounded by Rub

i as

Ri ≤
Ci +

∑i−1
j=1 Cj(1− Uj)

1−∑i−1
j=1 Uj

= Rub
i (8.8)

The time complexity of computing the response time upper bound Rub
i is O(i), and

the complexity of computing the bound for all the tasks is O(n2).
More polynomial complexity tests can apply the utilization bounds presented in

the previous chapter. For example, Han [Han, 1998] suggested modifying the task
set with smaller, but harmonic, periods using an algorithm with O(n2 log n) com-
plexity. Chen [Chen et al., 2003] investigated an algorithm with O(n3) complexity
that obtains an exact bound under the condition where periods and computation times
are integers. Lauzac limited period relations, and improved schedulability within a
O(n log n) time complexity.

Generally speaking, all polynomial complexity tests are only suf cient, not nec-
essary. The time complexity for exact tests is always NP-hard for non-trivial compu-
tational models [Sha et al., 2004]. Less complexity is always achieved at the cost of
less accuracy.

8.3.3 Constant complexity

The constant complexity tests apply the simplest bound, such as the classic bound
[Liu and Layland, 1973] or the hyperbolic bound [Bini et al., 2003]. Both of these
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tests are in O(1) time complexity, so they are easily implemented and fast enough for
on-line schedulability tests. As long as the utilization of a given task set is under this
bound, all tasks can be scheduled for sure. One shortcoming is that the two bounds
are only suitable for RM approach. In order to determine a concise schedulable con-
dition like Liu’s result, Peng [Peng and Shin, 1993] proposed a concept of system
hazard to check whether assigned tasks miss their deadlines, and computed the low-
est upper bound of DM algorithm. The calculation of DM bound can be nished in
O(1) time complexity.

Recently, another schedulability test with O(1) constant complexity has been de-
veloped by Masrur [Masrur et al., 2010, Masrur and Chakraborty, 2011]. This test
calculates an upper bound of the worst response time considering all accepted tasks,
and is different from all mentioned tests based on system utilization. If this upper
bound does not exceed the respective deadlines, all tasks can be scheduled under
DM. However, the comparison with other bound-based tests remains un nished by
the authors.

8.4 Utilization bounds for schedulability testing

Utilization bound Û provides a simple and practical way to test the schedulability
of a real-time task set. If the system utilization of a given task set

∑
ui is lower

than the bound Û , the task set can be scheduled by a processing resource. Although
the bound is only suf cient, not necessary, it is widely used in industry, because it is
easily implemented and fast enough for on-line tests. The simplest bound is decided
by the number of tasks in a task set. To raise the system utilization bound, strict
constrains are relaxed by subsequent researchers. The more information on the task
set included, the better the utilization bound obtained. In this section, we revisit the
development of the utilization bound.

8.4.1 Classical bound

In 1973, Liu [Liu and Layland, 1973] proposed a Rate Monotonic (RM) schedul-
ing algorithm for preemptive periodic tasks on a uniprocessor in a hard real-time
system, which played seminal roles in the development of real-time scheduling re-
search. The RM algorithm assigns priorities to tasks inversely proportional to their
periods. Liu proved an RM algorithm is the optimal xed priority assignment, and
derived the lowest upper bound from the worst case of system utilization by arbitrary
task set, that is

Û = n(21/n − 1) (8.9)

This bound decreases monotonically from 0.83 to 0.69 when n approaches in nity.
As long as the utilization of a given task set is beneath this bound, schedulability is
guaranteed. However, this bound is only suf cient, not necessary. Many task sets
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with utilization higher than this bound can still be scheduled. This phenomenon im-
plies that the processing resource is underutilized. The desire to improve the system
utilization leads to research on a more precise bound.

8.4.2 Closer periods

Burchard [Burchard et al., 1994] found an increasing utilization if all periods in
a task set have values that are close to each other. For a set of n tasks, Burchard
introduced two parameters Si = log2 Ti−�log2 Ti� and β = maxSi−minSi. The
least upper bound of processor utilization is

Û =

{
(n− 1)(2β/n−1 − 1) + 21−β − 1 β < 1− 1/n
n(21/n − 1) β ≥ 1− 1/n

(8.10)

Higher utilization can be obtained if task periods satisfy a certain constraint β <
1− 1/n. The disadvantage is that more calculation is needed, such as searching for
the explicit task periods.

8.4.3 Harmonic chains

Appropriate choice of task periods guarantees high utilization, especially when
task periods are harmonic. Sha proved that schedulability is guaranteed up to 100%
utilization with harnomic periods [Sha and Goodenough, 1990]. The limitation of
periods hedges the practice in the application domain. Kuo [Kuo and Mok, 1991]
generalized this result by grouping tasks in serveral harmonic chains. Every har-
monic chain is a list of numbers in which every number divides every number after
it. If there are k harmonic chains, clearly k ≤ n, the least upper bound to processor
utilization is

Û = k(21/k − 1) (8.11)

A better bound is obtained by applying period parameters. However, determining the
number of harmonic chains for a given task set also increases the time complexity.

Chen [Chen et al., 2003] investigated an exact bound that can be derived exhaus-
tively under the condition where periods and computation times are integers. An
algorithm with O(n3) complexity is presented and performs better than a harmonic
bound. He also proposed another algorithm, which yields an exact bound with expo-
nential complexity.

8.4.4 Hyperbolic bound

Bini [Bini et al., 2003] proposed a schedulability condition similar to a utilization
bound. This condition does not depend on the number of tasks. The schedulability
test using Bini’s result has the same complexity as using Liu’s bound, but is less
pessimistic. For a set of n tasks with xed priority order, where each task is charac-
terized by a single utilization ui, the task set is schedulable if∏

(ui + 1) ≤ 2 (8.12)
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This result can also be integrated into the method of harmonic chains.

8.5 Real-time task scheduling with MapReduce

We concentrate on looking for a utilization bound on a MapReduce cluster for
on-line schedulability analysis, because exact tests are nearly intractable in real-time
systems. Their time complexity is NP-hard for these non-trivial computational mod-
els [Sha et al., 2004], which is not acceptable for an on-line test.

The improvement of bound is achieved by introducing practical requirements of
applications. When periodic tasks are executed on a MapReduce cluster, the combi-
nation of sequential computing and parallel computing impacts real-time scheduling.
In the next section, we analyze how the segmentation between Map and Reduce in-

uences cluster utilization.

8.5.1 System model

Assume a task set Γ = (τ1, τ2, · · · , τn) including n periodic tasks on a MapRe-
duce cluster. Without losing generality, we let T1 < T2 < · · · < Tn. In RM schedul-
ing, task with higher request rate has higher priority, so task τ1 with shortest period
has highest priority, while the last τn has the lowest. All tasks are independent, that
is, have no precedence relationship. Besides that, all tasks are fully preemptive, and
the overhead of preemptive is negligible.

MapReduce solves distributable problems using a large number of computers, col-
lectively referred to as a cluster, with certain computing capability. One task is par-
titioned into nm Maps and nr Reduces. The numbers of nm and nr are not xed,
varying from one task to another. Maps performed in parallel nish in a certain time
Mi, which means total time required to complete nm Map operations. Total time
spent on nr Reduces is execution time Ri. For simpli cation, we assume Ri is in
proportion to Mi, and α = Ri/Mi is introduced to express the ratio between the two
operations. Here we simply let all tasks use the same α. The whole computation
time for task τi is

Ci = Mi +Ri = Mi + αMi =
1

α
Ri +Ri (8.13)

One remarkable character of MapReduce is that no Reduce operation can be submit-
ted until all Map operations nish, so Mi and Ri have innate temporal sequence and
share no overlap. In the following context, we use Map/Reduce to signify the whole
executing process of Map/Reduce operations.

As in the former assumption, request of each instance occurs when a new period
begins, so the Map request is consistent with the request of the whole task. The
moment when a Reduce request is submitted makes a huge impact on cluster utiliza-
tion. If Reduce always executes as soon as Map nishes, the two stages of Map and
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Reduce are continuous. Hence the task can be considered as a general case without
segmentation, the bound of which is the famous Liu’s bound. If Reduce does not
make its request in a hurry, this tradeoff can be bene cial to cluster utilization by
making better use of spare time. We introduce parameter β = TRi

/TMi
to reveal the

segmentation ratio. The same β is applied for all tasks in task set Γ. Clearly,

Ti = TMi
+ TRi

= TMi
+ βTMi

=
1

β
TRi

+ TRi
(8.14)

Utilization ui is the ratio of computation time to its period ui = Ci/Ti. System
utilization U is the sum of utilization for all the tasks in the task set.

U =

n∑
i=1

ui =
M1 +R1

T1
+

M2 +R2

T2
+ · · ·+ Mn +Rn

Tn
(8.15)

8.5.2 MapReduce segmentation

FIGURE 8.2: Comparison of a normal task and a MapReduce task.

Seen from the above system model, there is a natural segmentation between Map
and Reduce. For a MapReduce task, a delay might exist during the whole execu-
tion time, in contrast with a normal task executed in one go from beginning to end.
How does this characteristic impact on the schedulability performance? We take
Figure 8.2 for example, to give an intuitive idea.

There is a task set Γ = (τ1, τ2, τ3), in which C1 = 4, C2 = 6. Because T1(12) <
T2(16) < T3(24), task τ1 has the highest execution priority, while task τ3 has the
lowest.
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First, we analyze the case of normal tasks. In order to fully utilize a cluster, the
computation time C3 of task τ3 is no more than 4. Otherwise, the cluster fails in
scheduling these three tasks simultaneously. In this case, the system utilization is
UNormal =

C1

T1
+ C2

T2
+ C3

T3
= 0.875

Next, we consider the case of MapReduce tasks with α = 1. Computation time
C3 can be increased to 7 from 4, without changing C1 and C2. The system utilization
is then UMapReduce =

M1+R1

T1
+ M2+R2

T2
+ M1+R3

T3
= 1.

Therefore, the system utilization augments owing to the segmentation between
Map and Reduce. Quantitative analysis of exact augmentation is presented in the
next section.

8.5.3 Worst pattern for a schedulable task set

To begin with, let us review the concept of critical instant theorem proposed by
Liu [Liu and Layland, 1973].

THEOREM 8.1

A critical instant of a task is the moment at which the task makes a request
which has the largest response time. It happens whenever the task is requested
simultaneously with all higher priority tasks.

The concept implies the worst case occurs when all the tasks start to make requests
at the same time. Therefore, the offsets of all tasks are set to zero, that is, Oi = 0.
In order to decide whether a task set is schedulable, we check if and only if the rst
request of each task is met in their rst period when all tasks begin simultaneously.

In this section, TMi
and TRi

are treated as relative deadlines for Map and Reduce,
respectively. Map Mi instantiates at the beginning of a new period, and must be

nished before TMi
. At the moment TMi

, Reduce Ri makes the request, and its
execution lasts for TRi

at most. In this assumption, how does the cluster bound
change according to the given latency TMi

? In order to get the lowest utilization,
we nd out the worst pattern for a schedulable task set on the MapReduce cluster.
Lemma 8.1 depicts the worst pattern for a schedulable task set that fully utilizes a
MapReduce cluster.

LEMMA 8.1

For a task set Γ = (τ1, τ2, · · · , τn) with fixed priority assignment where Tn >
Tn−1 > · · · > T2 > T1, if the relative deadline of Reduce is not longer than
Map (β ≤ 1), the worst pattern ensuring all tasks to be scheduled is
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M1 = T2 − T1

M2 = T3 − T2

...
Mn−1 = 1

1+βTn − Tn−1

Mn = (2 + α)T1 − 1+α
1+βTn

PROOF Suppose a task set is fully utilizing a MapReduce cluster. Fully
utilizing has two meanings. The first implies that a task set can be scheduled
on a cluster, and the second shows that no improvement can be made in
terms of cluster utilization. Each task τi in task set Γ is defined by a triple
< Mi, Ri, Ti >, or equally < Mi, α, Ti > considering α = Ri/Mi.

In order to analyze the period relationship between two neighboring tasks
with the most adjacent priorities, we assume that

M1 = T2 −
⌊
T2

T1

⌋
· T1 + ε (8.16)

Where ε is a real number. We reduce Map runtime M1 with ε when ε > 0.
In order to maintain the full processor utilization, Ma

2 is improved with the
amount of ε.

Ma
1 = T2 −

⌊
T2

T1

⌋
· T1 T a

1 = T1

Ma
2 = M2 + ε T a

2 = T2

...
...

Ma
n = Mn T a

n = Tn

(8.17)

Through this adjustment cluster utilization Ua is consequently smaller than
original utilization U , because

U − Ua = ε(1 + α)(
1

T1
− 1

T2
) > 0 (8.18)

Although the two task sets fully utilize the cluster, the latter has a low cluster
utilization. As a result, the new pattern is worse than the former one.

On the contrary, when ε < 0, M2 gets longer to fully use the cluster as

M b
1 = T2 −

⌊
T2

T1

⌋
· T1 T b

1 = T1

M b
2 = M2 +

⌈
T2

T1

⌉
· ε T b

2 = T2

...
...

M b
n = Mn T b

n = Tn

(8.19)

The corresponding utilization U b decreases again, owing to

U − U b = ε(1 + α)(
1

T1
−
⌈
T2

T1

⌉
1

T2
) > 0 (8.20)
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The worst pattern of a task set makes cluster utilization reach minimum, as
long as ε approaches zero. The following analysis is based on the condition
ε = 0.

Next, the period T1 enlarges
⌊
T2

T1

⌋
times as

M c
1 = T2 −

⌊
T2

T1

⌋
· T1 T c

1 =
⌊
T2

T1

⌋
· T1

M c
2 = M2 + (

⌊
T2

T1

⌋
− 1)(T2 −

⌊
T2

T1

⌋
T1) T

c
2 = T2

...
...

M c
n = Mn T c

n = Tn

(8.21)

Compare new utilization U c with U

U − U c = (1 + α)(1− 1/

⌊
T2

T1

⌋
)(
T2

T1
) ≥ 0 (8.22)

This revision further pulls down the cluster utilization, which leads us to
conclude that closer periods degrade the system utilization. If we try to search

for the worst pattern, the smallest value of
⌊
T c
2

T c
1

⌋
should be taken. Hence the

worst case happens when
⌊
T c
2

T c
1

⌋
= 1, in other words, T2 < 2T1.

To sum up, we have
M1 = T2 − T1 (8.23)

Using similar methods, we obtain more results about the period relationship
between two adjacent tasks.

Mi = Ti+1 − Ti, i = 2, 3, · · · , n− 2 (8.24)

For the purpose of analyzing the relationship between Tn−1 and Tn, we con-
struct a new task set by halving the period Tn−1. The periods of other tasks
keep the same T1, T2, · · ·Tn−2, Tn. To avoid any waste, Map execution time
Mn−1 is transferred from τn−1 to τn.

Md
1 = M1 T d

1 = T1

Md
2 = M2 T d

2 = T2

...
...

Md
n−1 = 0 T d

n−1 = Tn−1/2
Md

n = Mn +Mn−1 T d
n = Tn

(8.25)

A lower utilization Ud is achieved, comparing with old U

U − Ud = Mn−1(
1

Tn−1
− 1

Tn
) > 0 (8.26)

The task set is resorted according to the length of period assuring Tn >
Tn−1 > · · · > T2 > T1. The new pattern further decreases utilization under
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the condition that T d
n−1 < 1

1+βT
d
n , owing to T d

n−1 ≤ 1
1+β ·2T d

n−1 = 1
1+βTn−1 <

1
1+βTn = 1

1+βT
d
n .

Map Mn−1 is obtained

Mn−1 =
1

1 + β
Tn − Tn−1 (8.27)

Time left for Map execution Mn is

Mn =
1

1 + β
Tn −

n−1∑
i=1

Ci −
n−1∑
i=1

Mi = (2 + α)T1 − 1 + α

1 + β
Tn (8.28)

The above worst pattern stands for the most pessimistic situation where the least
utilization can be calculated. Under the condition given by Lemma 2, schedulable
upper bound on MapReduce cluster is derived.

THEOREM 8.2
For a task set Γ = (τ1, τ2, · · · , τn) with a fixed priority assignment where

Tn > Tn−1 > · · · > T2 > T1, if the length of reduce is not longer than
map (β ≤ 1), the schedulable upper bound of cluster utilization is U = (1 +

α)
{
n[(2+α

1+β )
1/n − 1] + β−α

1+β

}
.

PROOF To simplify the notation, parameters γ1, γ2, · · · , γn are intro-
duced

Ti = γiTn i = 1, 2, · · · , n− 1 (8.29)

Computation time of n tasks is expressed as

Ci = (1 + α)(γi+1Tn − γiTn) i = 1, 2, · · · , n− 2
Cn−1 = (1 + α)( 1

1+βTn − γn−1Tn)

Cn = (1 + α)[(2 + α)γ1Tn − 1+α
1+βTn]

(8.30)

Which gives the cluster utilization U

U = (1 + α)[

n−2∑
i=1

γi+1 − γi
γi

+

1
1+β − γn−1

γn−1
+ (2 + α)γ1 − 1 + α

1 + β
] (8.31)

In order to compute the minimum value of U , we set the first order partial
derivative of function U with respect to variable γi to zero

∂U

∂γi
= 0 i = 1, 2, · · · , n− 1 (8.32)
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For variable γi, we get the equation

γ2
1 = 1

2+αγ2
γ2
i = γi−1γi+1 i = 2, · · · , n− 1

(8.33)

The general expression of γi is

γi =
1

2 + α
(
2 + α

1 + β
)i/n i = 1, 2, · · · , n− 1 (8.34)

By substituting general value of γi into U , the least cluster utilization is
achieved as

U = (1 + α)

{
n[(

2 + α

1 + β
)1/n − 1] +

β − α

1 + β

}
(8.35)

Moreover, a symmetric utilization bound is easily deduced using a similar method
as Theorem 2. If the length of reduce is longer than map (β > 1), the schedulable
upper bound of cluster utilization is

U = (1 +
1

α
)

{
n[(

β + 2αβ

α+ αβ
)1/n − 1] +

α− β

α+ αβ

}
(8.36)

On a real MapReduce cluster, numerous tasks are executed concurrently, so the num-
ber n is typically very large. Therefore, for all practical purposes, we are most in-
terested in the cluster utilization as n → ∞. When n is in nite, the limit of U
is

U∞ = lim
n→∞U =

{
(1 + α)[ln( 2+α

1+β ) +
β−α
1+β ] β < 1

(1 + 1
α )[ln(

β+2αβ
α+αβ ) + α−β

α+αβ ] β ≥ 1
(8.37)

Figure 8.3 outlines the uctuation of the utilization bound with respect to α and
β, where α shows the proportion of execution time between Map and Reduce and
β illustrates the ratio between two relative deadlines. Seen from Figure 8.3, the
bound is a symmetrical plane on the axis α = β. It implies that the value of α
and β should be harmonious, that is, difference between α and β can not be too
dramatic. Easily understood, if a long Map (α < 1) is given a short relative deadline
(β > 1), it is impossible to schedule all the tasks before periods expire. That is
why the cluster utilization dips to zero when assignment of the two variables goes in
opposite directions. If α and β are given reasonable values in advance and task sets
can be scheduled on the MapReduce cluster, utilization bound is a concave function
with respect to α and β. Figure 8.4 is drawn when α = β. The bound rises steadily
due to segmentation of Map and Reduce. When β approaches zero, the least cluster
utilization is near 0.7. The amount of utilization rises as β goes up until β = 1,
peaking at 0.81, which is also a global maximum point. After that, the cluster bound
declines slowly to 0.7 again, when β increases to in nity. Notice that Liu’s utilization
bound U = n(2

1
n − 1) can be represented in a task set with β = 0 or β = ∞. β = 0
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FIGURE 8.4: Optimal utilization.

is an extreme case where the time spent on Reduce is negligible, so Map execution
time stands for the whole computation time. The case of β = ∞ implies that Reduce
execution occupies the whole computation time. Therefore, our new bound is a
general expression of Liu’s bound, only if a special value of β is assigned in these
functions.

Our result improves on Liu’s work. This augmentation comes from the exibility
of MapReduce. The execution of Map operations should be rst promised, because
Reduces need to collect all the output of Maps. However, the moment when Reduce
makes a request changes the nal cluster utilization. If Reduce waits in a reasonable
period and hands over the cluster to a more pressing task with lower priority, it is
possible to achieve more dynamic allocation and a higher utilization bound than in
the case in which no segmentation exists between Map and Reduce.
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8.6 Reliability indication methods

Since the real-time requirement is a signi cant QoS criterion of cloud service
provision, an on-line schedulability test is necessary. This test can determine whether
an arriving application is accepted or not, so it can guarantee the system stability.

Several popular schedulability tests in real-time computing are presented, among
which a comprehensive analysis is built, in terms of balance between time com-
plexity and acceptance ratio. Some schedulability tests yield to exact conditions to
achieve the maximum system utilization, but the time complexity is not acceptable
for an on-line test. Some of them applying suf cient conditions might somewhat
underutilize the cluster, but can be nished quickly, in predictable running time.
Herein, we focus on the tests with constant-time complexity, which is more suitable
for on-line guarantee in cloud context.

Although a number of schedulability tests have been studied, they are incompa-
rable if the determination conditions are different. In order to maintain high system
utilization, the problem of choosing a reliable test attracts our attention. Typically,
simulation can give an intuitive answer, but the result always depends on the way
random parameters are generated and the number of experiments. Therefore, we in-
troduce a concept of test reliability to evaluate the probability that a random task set
can pass a given schedulability test, and we de ne an indicator to express the test
reliability. The larger the probability, the more reliable the test is. From the point of
view of a system, a test with high reliability can guarantee high system utilization.

8.6.1 Reliability indicator

The effectiveness of a suf cient schedulability test can be measured by the ac-
cepted ratio of task sets. The larger the ratio is, the more reliable the test is. One typ-
ical method to calculate acceptable ratio is Monte Carlo simulation, in which a large
number of synthetic task sets need to be generated with random parameters. How-
ever, almost all measurements are made with some intrinsic errors. If the method
of generating parameters is biased, unreasonable conclusions might be deduced due
to the different hypotheses between simulations and actual working conditions. For
these reasons, a probability method is used to indicate the likelihood of an acceptable
ratio.

Note that this accepted ratio is different from the similar concept in previous re-
searches [Bini and Buttazzo, 2004]. The denominator of this ratio is the total number
of participated tests, rather than the number of feasible ones. Such an adjustment
makes our analysis much easier, because nding out all feasibly schedulable task
sets in an exact test is extremely time consuming. Another advantage is that a simple
UUniform algorithm turns out to be practical in our simulation, which does not work
for original test of accepted ratio, owing to a huge number of iterations [Bini et al.,
2003].

Without loss of generality, we suppose that task utilization ui is uniformly dis-
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tributed with mean value 1/2 and variance 1/12. Two probability distributions will
be calculated in the following context.
(1) X =

∑n
i=1 ui

X is the sum of n independent ui, and the Probability Density Function (PDF) of
X is

FPDF (X) =
1

(n− 1)!

�U�∑
k=0

(−1)k(
n

k)(U − k)n−1 U ∈ [0, n] (8.38)

Therefore, U has mean value n/2 and variance n/12. Its Cumulative Distribution
Function (CDF) is

FCDF (X) =
1

n!

�U�∑
k=0

(−1)k(
n

k)(U − k)n U ∈ [0, n] (8.39)

More generally, for a sequence of independent and identically distributed random
variables ui with expected values μ and variances σ2, the central limit theorem as-
serts that for large n, the distribution of the sum X is approximately normal with
mean nμ and variance nσ2.

X → N (
n

2
,
n

12
) (8.40)

(2) Y =
∑n

i=1 2ui/(1 + ui)
An intermediate variable yi = 1/(1 + ui) is introduced, and its PDF is expressed

as

GPDF (yi) =
1

y2i
yi ∈ [

1

2
, 1] (8.41)

Mean and variance of yi are

E(yi) =

∫ 1

1
2

yig(yi)dyi = ln 2 (8.42)

D(yi) = E(y2i )− [E(yi)]
2 =

1

2
− (ln 2)2 (8.43)

With yi, we obtain

Y =

n∑
i=1

2ui

1 + ui
=

n∑
i=1

2(1− yi) (8.44)

Y is approximated by a normal distribution as

Y → N [2n(1− ln 2), 4n(
1

2
− (ln 2)2)] (8.45)

We de ne reliability indicator w as

w =
x− μ

σ
(8.46)
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For a generic normal random variable with mean μ and variance σ2, the CDF is
F (x) = Φ(x−μ

σ ), in which Φ(x) is the standard normal distribution. Since the CDF
of Φ(w) is a monotone increasing function with respect to w, w can indicate the
probability that a random task set passes a given examination. The higher the proba-
bility obtained, the better the examination is. Therefore, different schedulability tests
can be compared by a reliability indicator. The test with a large value of w is more
reliable than that with a small value.

8.6.2 Schedulability test conditions

Liu’s RM condition. RM scheduling is an optimum static algorithm [Liu and Lay-
land, 1973]. If RM can not make a task set schedulable on a cluster, no other rules can
succeed in scheduling. RM algorithm is only suitable for the cases in which a task
period exactly equals its deadline. Liu proposed a concept of system utilization U as
a suf cient condition for a schedulability test. The subscripts l, p and m represent
the work of Liu, Peng and Masrur detailed in the following content, respectively.

THEOREM 8.3

For a set of n tasks with fixed utilization u1, u2, · · · , un, there exists a feasible
algorithm ensuring all tasks can be scheduled on a cluster if

Ul =

n∑
i=1

ui ≤ n(21/n − 1) (8.47)

Peng’s DM condition. Deadline replaces period as the new determinant when
deadline does not equal period. Peng [Peng and Shin, 1993] modi ed the system uti-
lization Up for DM algorithm by introducing system hazard θ = Di/Ti, 1 ≤ i ≤ n.

THEOREM 8.4

For a set of n tasks with fixed utilization u1, u2, · · · , un, there exists a feasible
algorithm ensuring all tasks can be scheduled on a cluster if

Up =

n∑
i=1

ui ≤
{
θ θ ∈ [0, 0.5)
n[(2θ)1/n − 1] + 1− θ θ ∈ [0.5, 1]

(8.48)

Masrur’s DM condition. Masrur [Masrur et al., 2010] also studied a set of tasks
with deadline no longer than period, and proposed a load condition to test whether a
task set is schedulable on a cluster.

THEOREM 8.5

For a set of n tasks with fixed utilization u1, u2, · · · , un, there exists a feasible
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algorithm ensuring all tasks can be scheduled on a cluster if

n∑
i=1

max(
ui

θ
,

2ui

1 + ui
) ≤ 1 (8.49)

Masrur’s condition contains a maximum operator. For the sake of simplicity, we
replace the max by introducing two parameters ul = (1+minui)/2 and uh = (1+
maxui)/2. There are m tasks (m ≤ n) satisfy that ui/θ is larger than 2ui/(1+ ui).
Then Masrur’s condition is decomposed to

Um =

⎧⎪⎨⎪⎩
1
θ

∑n
i=1 ui ≤ 1 θ ∈ [0, ul)

1
θ

∑m
i=i ui +

∑n−m
j=1

2uj

1+uj
≤ 1 θ ∈ [ul, uh)∑n

i=1
2ui

1+ui
≤ 1 θ ∈ [uh, 1]

(8.50)

8.6.3 Comparison of rate monotonic conditions

When deadline equals period, we have two RM suf cient conditions for schedu-
lability test.

Based on Liu’s condition (8.47) and (8.40), we get μ = n/2, σ =
√
n/12 and

x = n(21/n − 1), hence the reliability indicator of Liu’s condition is

wl =
x− μ

σ
=

n(21/n − 1)− n
2√

n
12

(8.51)

According to Masrur’s load test, we obtain

Um =

n∑
i=1

2ui

1 + ui
≤ 1 (8.52)

From (8.45), μ = 2n(1− ln 2), σ =
√

4n( 12 − (ln 2)2) and x = 1, so the reliability
indicator of Masrur’s condition is

wm =
x− μ

σ
=

1− 2n(1− ln 2)√
4n( 12 − (ln 2)2)

(8.53)

The comparison between the two reliability indicators has been plotted in Figure 8.5.
Notice that wl is always larger than wm, which implies that the schedulability test
using Liu’s condition is more reliable than that using Masrur’s condition. This com-
parison result can be more intuitive when we focus on the accepted probability of
the two tests. Figure 8.6 shows the comparison of accepted probability with different
numbers of tasks, ranging from 2 to 20. Masrur’s test is more pessimistic, because an
arbitrary task set has lower probability of succeeding in Masrur’s test than in Liu’s
test. The difference between two accepted ratios diminishes as the number of tasks
augments. When the number reaches a certain value, the reliability of the two tests is
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FIGURE 8.6: Comparison of accepted probabilities.

nearly the same. In Figure 8.5 and Figure 8.6, the gap between two reliability indi-
cators increases when the gap between acceptible possibility is reduced. Hence, the
reliability indicator can only show relative difference of test reliability, rather than
absolute performance.

8.6.4 Comparison of deadline monotonic conditions

Next, the limitation that the deadline exactly equals the period is broken. In DM
scheduling, we also analyze two schedulable conditions when the deadline is not
longer than period.

According to Peng’s condition (8.48) and (8.40), we obtain μ = n/2, σ =√
n/12. The reliability indicator is

wp =

⎧⎨⎩
θ−n

2√
n
12

θ ∈ [0, 0.5)

n[(2θ)1/n−1]+1−θ−n
2√

n
12

θ ∈ [0.5, 1]
(8.54)
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wp is a function of two variables of n and θ, and its gradient vector is

∇wp(n, θ) = (
∂wp

∂n
,
∂wp

∂θ
) (8.55)

The gradient vector implies: (a) ∂wp

∂n < 0 means that the reliability indicator de-
creases as the number of tasks increases. This result makes sense, because it is true
that the schedulable probability descends if more tasks try to enter the cluster. (b)
∂wp

∂θ > 0 means that the indicator rises when the deadline is prolonged.
A factor α is introduced to represent the ratio α = m/n, and the distribution of

Um can be developed as

Um →
⎧⎨⎩

N (μ1, σ
2
1) θ ∈ [0, ul)

N (μ2, σ
2
2) θ ∈ [ul, uh)

N (μ3, σ
2
3) θ ∈ [uh, 1]

where:
μ1 = 1

θ
n
2

σ1 = 1
θ

√
n
12

μ2 = α
θ

n
2 + 2(1− α)n(1− ln 2)

σ2 =
√

α
θ2

n
12 + 4(1− α)n( 12 − (ln 2)2)

μ3 = 2n(1− ln 2)

σ3 =
√

4n( 12 − (ln 2)2)

(8.56)

The reliability indicators are

wi =
1− μi

σi
i = 1, 2, 3 (8.57)

Gradient vectors are

∇w1(n, θ) = (∂w1

∂n , ∂w1

∂θ )

∇w2(n, θ, α) = (∂w2

∂n , ∂w2

∂θ , ∂w2

∂α )

∇w3(n) =
∂w3

∂n

(8.58)

The reliability indicator of Masrur’s DM condition is quite complicated. (a) ∂wi

∂n <
0, i ∈ [1, 2, 3] shows that the accepted ratio of test decreases as the number of tasks
increases. (b) ∂w1(n,θ)

∂θ > 0 implies that lengthened deadline can increase the pass-
ing probability if the deadline is less than half of the period. (c) The variations of
w2(n, θ, α) in the θ and α directions are not monotonic any more. Figure 8.7 shows
how the value of w2(n, θ, α) changes with respect to θ and α. Reliability indicators
of the two conditions are both piecewise functions. In order to clearly compare them,
a factor is de ned as

Δ = wm − wp (8.59)

The positive value of Δ indicates that a task set is more likely to pass Masrur’s test
than Peng’s test. In other words, Masrur’s test is better. Comparison can be detailed
by the following four steps.
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FIGURE 8.7: w2(n, θ, α) w.r.t θ and α.

Case θ ∈ [0, 0.5):

Δ1 = w1 − wp = 0 (8.60)

In this part, the value of Δ is always zero, so the two tests have the same reliability.
System designers can choose any of them as the schedulable condition.
Case θ ∈ [0.5, ul):

Δ2 = w1 − wp (8.61)

Considering n · minui ≤ ∑n
i=1 ui ≤ θ, another condition θ < ul =

(1 +minui)/2 < (1 + θ
n )/2 is obtained. Therefore, the value of θ falls into range

[0.5, n/(2n− 1)). Figure 8.8 presents the cases in which Masrur’s condition is less
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FIGURE 8.8: Better performance of Masrur’s test (θ ∈ [0.5, ul)).

pessimistic than Peng’s. When the deadline is relatively short, Masrur’s test per-
forms better. However, this superiority diminishes as more tasks are admitted in
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the system. That is caused by the possible eld [0.5, n/2n− 1) shrinking with the
increasing number of tasks.

Case θ ∈ [ul, uh):

Δ3 = w2 − wp (8.62)

Figure 8.9 shows the performance comparison if θ locates in the eld [ul, uh). The
points on each sub- gure stand for the cases where Masrur’s condition exceeds
Peng’s. Especially, Masrur’s test is more reliable for most cases when there are
only two tasks in the set. Exceeding the number of tasks results in the degradation
of Masrur’s advantage. The reliability indicator is not only useful for performance
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FIGURE 8.9: Better performance of Masrur’s test (θ ∈ [ul, uh)).

comparison, but also capable of specifying an exact pattern where the winner can be
applied. For example, in Figure 8.9, the system designer can choose a dominant con-
dition based on foreseeable n, α and β. If the point appears on the gure, Masrur’s
condition wins, otherwise, Peng’s test is preferred.

Case: θ ∈ [uh, 1]:

Δ4 = w3 − wp (8.63)

In this part, one condition needs to be satis ed, that is, θ > uh = (1 +maxui)/2 >
(1 + θ

n )/2. The possible eld of θ is [n/(2n− 1), 1]. In Figure 8.10, only two short
lines appear, which stand for the cases where Masrur’s test performs better. Clearly,
it seldom works as the dominated condition for schedulability test, only under strict
constraint that the number of tasks is no more than three. Hence Masrur’s condition
is not recommended to system designers.
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8.7 Concluding remarks

In this chapter, we studied the problem of scheduling real-time tasks on MapRe-
duce cluster, arising from demand for cloud computing. We rst formulate the real-
time scheduling problem, based on which classic utilization bounds for schedulabil-
ity test are revisited. We then present a MapReduce scheduling algorithm, combining
the particular characteristics of MapReduce. After Map is nished, a proper pause
before submission of Reduce can enhance scheduling ef ciency for the whole clus-
ter. We deduce the relationship between cluster utilization bound and the ratio of
Map to Reduce. This new schedulable bound with segmentation uplifts Liu’s bound.
The latter can be further considered as a special case of the former. The effectiveness
of this bound is evaluated by simulation using SimMapReduce. Results show that
this new bound is less pessimistic, and it supports on-line schedulability test in O(1)
time complexity. Given the lack of general solutions to compare the performances of
different tests, we propose a method to indicate test reliability. Through a reliability
indicator, the probability of passing different tests can be compared. We apply this
method in several classic schedulability tests. Results show that Liu’s salient bound
is a dominated condition in RM tests. For DM tests, test reliability depends on sys-
tem parameters. If these parameters are known in advance, system designers can
analyze the performance exactly, and then choose an applicable test among several
alternatives.



Chapter 9

Future for cloud computing

Cloud computing implies that computing is not only operated on local computers,
but on centralized facilities by third-party computing and storage utilities. It refers
to both the applications delivered as services over the Internet and system hardware/-
software in datacenters as service providers. Cloud solutions seem to state master
keys for the IT enterprises which suffer from budget concerns and economic woes,
and a number of industry projects have been started to create a global, multi-data
center, open source cloud computing testbed for industry, research, and education.

Encouraging opportunities also brings out corresponding challenges. Cloud com-
puting is easily confused with several existing technologies including grid comput-
ing, utility computing, web service, and virtualization. Again, cloud computing is a
newly evolved delivery model. It covers with equal importance both technology and
business requirements, and it lets users focus on their abilities on demand by abstract-
ing its technology layer. In that case, the scheduling problem in cloud computing is
worth reconsidering by researchers and engineers. In this book, we addressed the
resource allocation problem in terms of economic aspects to meet business require-
ments. At the same time, we were concerned with the real-time schedulability test to
provide the cloud datacenter with technical supports. Both theoretical and practical
efforts were made to solve cloud scheduling problems and to facilitate the succeeding
researches.

In order to utilize cloud computing to serve as the infrastructure of multi-
dimensional data analysis applications, the combination of traditional parallel
database optimization mechanisms and cloud computing is expected. In this book,
we try to utilize methods of cloud computing to satisfy commercial software require-
ments. In addition to realizing a concrete multi-dimensional data analysis query
with MapReduce, we mostly focus on the performance optimization, and combine
MapReduce with several optimization techniques coming from parallel database. It
is an important aspect in designing cloud computing-based solution for business soft-
ware. This approach does not depend on a third-party product, and it can guarantee
the performance application.

Besides the mentioned contributions, our work has raised many interesting ques-
tions and issues that deserve further research.

• Choosing suitable serialization/de-serialization algorithms to deal with map-
per objects and intermediate results is an important issue. Since these proce-
dures are repeatedly performed, it is closely related to the performance. In
our distinct-value-wise job-scheduling, Bitmap compressing is needed to re-
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duce storage requirements and improve the ef ciency of data access. We will
address these issues in our work in the near future.

• Extending our calculation to a larger computing scale is another interesting di-
rection. In this work, all the experiments were running over one single cluster.
However, running experiments over one cluster is a bit far from exploiting a
real Cloud platform. In order to further address a more realistic large-scaled
multi-dimensional data analytical query processing, multiple clusters or even
the real Cloud experimental platform need to be exploited during the experi-
ments. The hardware update will allow us to handle larger datasets.

• Utilizing cloud computing to process large datasets involves another challeng-
ing problem—data privacy. This topic was not covered in our work. However,
it is still an important aspect. People or enterprises will not want to put their
data on the Cloud until their private data can be protected from unauthorized
access. Some authorization and authentication technologies have already been
developed in Grid Computing. They are very useful for the Cloud platform
data accessing protection requirement. However, the authorization and au-
thentication of Cloud platforms are more challenging than in Grid platforms.
Since it is a commercialized, shared computing platform, users will require

ner authorization and authentication mechanisms.

• Enriching business models for cloud providers. Besides the technical strengths
of cloud computing, users decide to head in clouds for economic reasons,
so the business model of cloud computing should be more exible, offering
clients scalable price options. For example, Amazon customers can choose
purchasing models among on-demand, reserved, spot and even free tier ac-
cording to their own preferences. With more and more cloud solutions emerg-
ing, business models must be reformed to maintain customer loyalty or attract
new interest. In addition, new economic models that support the trading, ne-
gotiation, provisioning and allocation based on consumer preference should
be developed.

• Expanding schedulability bound to more complicated systems. The primer
utilization bound for MapReduce cluster is not a nal result; our investigation
will be continued considering more realistic features of cloud services. We
shall extend our result to cases of imprecise computations, dependent tasks,
aperiodic tasks, and non-preemptive execution in the future. Since we ideally
assume the computation ability of a cluster as a whole by hiding assignment
details of every Map/Reduce task inside the cluster, this bound is mainly used
in the single processor scenario. Next, we intend to apply this bound and
heuristics to solve multi-processor problems.

• Improving reliability of on-line schedulability tests for cloud datacenters.
There is always a contradiction between the test accuracy and its time com-
plexity. We have improved the schedulability bound by introducing practical
characteristics of MapReduce segmentation, but it is still pessimistic compared
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with exact schedulability test. Determining test reliability with a low time
complexity is still challenging.

There is a lot of other interesting work to do to integrate the MapReduce model
into, or utilizing cloud computing in resolving the real problems, including industrial
applications as well as scienti c computations. For instance, MapReduce’s combi-
nation with web techniques, re-designing of various algorithms for tting MapRe-
duce execution style, etc. are all interesting research subjects. We believe that the
performance issue addressed in this work represents an important aspect in cloud
computing. We hope that our work can provide a useful reference for people who
want to study and utilize MapReduce and cloud computing platforms.
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Li, K.-C., editors, Advances in Grid and Pervasive Computing. Proceedings of
the 2nd International Conference in Grid and Pervasive Computing (GPC 2007),
Paris, France, May 2–4, 2007, volume 4459 of Lecture Notes in Computer Sci-
ence (LNCS), pages 579–589. Springer-Verlag.

[Yu and Magoulès, 2008] Yu, L. and Magoulès, F. (2008). Towards dynamic inte-
gration, scheduling and rescheduling of scienti c applications. Journal of Algo-
rithms and Computational Technologies, 2(3):391–408.

[Yu and Magoulès, 2009] Yu, L. and Magoulès, F. (2009). Service scheduling and
rescheduling in an applications integration framework. Advances in Engineering
Software, 40(9):941–946.

[Zaharia et al., 2009] Zaharia, M., Borthakur, D., Sarma, J. S., Elmeleegy, K.,
Shenker, S., and Stoica, I. (2009). Job scheduling for multi-user MapReduce
clusters. Technical Report UCB/EECS-2009-55, EECS Department, University
of California, Berkeley.



202 Cloud Computing: Data-Intensive Computing and Scheduling

[Zaharia et al., 2010] Zaharia, M., Borthakur, D., Sarma, J. S., Elmeleegy, K.,
Shenker, S., and Stoica, I. (2010). Delay scheduling: a simple technique for
achieving locality and fairness in cluster scheduling. In EuroSys’10: Proceedings
of the ACM SIGOPS European Conference on Computer Systems 2010, pages
265–278.

[Zaharia et al., 2008] Zaharia, M., Konwinski, A., Joseph, A., Katz, R., and Stoica,
I. (2008). Improving MapReduce performance in heterogeneous environments.
In Draves, R. and van Renesse, R., editors, Proceedings of the 8th Symposium on
Operating Systems Design and Implementation, pages 29–42. USENIX Associa-
tion.

[Zhang et al., 2009] Zhang, S., Han, J., Liu, Z., Wang, K., and Feng, S. (2009).
Accelerating MapReduce with distributed memory cache. volume 0, pages 472–
478, Los Alamitos, CA, USA. IEEE Computer Society.

[Zhimin and Vivek, 2005] Zhimin, C. and Vivek, N. (2005). Ef cient computation
of multiple group-by queries. In SIGMOD’05: Proceedings of the 2005 ACM
SIGMOD International Conference on Management of Data, pages 263–274.



As more and more data is generated at a faster-than-ever rate, 

processing large volumes of data is becoming a challenge for 

data analysis software. Addressing performance issues, Cloud  
Computing: Data-Intensive Computing and Scheduling explores 

the evolution of classical techniques and describes completely new 

methods and innovative algorithms. The book delineates many 

concepts, models, methods, algorithms, and software used in cloud 

computing.

After a general introduction to the field, the text covers resource 

management, including scheduling algorithms for real-time tasks and 

practical algorithms for user bidding and auctioneer pricing. It next 

explains approaches to data analytical query processing, including 

pre-computing, data indexing, and data partitioning. Applications of 

MapReduce, a new parallel programming model, are then presented. 

The authors also discuss how to optimize multiple group-by query 

processing and introduce a MapReduce real-time scheduling 

algorithm.

Features 

Discusses the implementation of priority-based strategies

Presents the elements underlying a cloud datacenter

Offers solutions to resource allocation problems in clouds

Describes the features of multidimensional data analysis queries

Illustrates the use of MapReduce, a new parallel programming 

model

Explores directions for further research

A useful reference for studying and using MapReduce and cloud 

computing platforms, this book presents various technologies that 

demonstrate how cloud computing can meet business requirements 

and serve as the infrastructure of multidimensional data analysis 

applications.

Computer Science

K14685


	Front Cover
	Cloud Computing: Data-Intensive Computing and Scheduling
	Copyright
	Table of Contents
	List of Figures
	List of Tables
	Foreword
	Preface
	Warranty
	1. Overview of cloud computing
	2. Resource scheduling for cloud computing
	3. Game theoretical allocation in a cloud datacenter
	4. Multi-dimensional data analysis in a cloud datacenter
	5. Data intensive applications with MapReduce
	6. Large-scale multi-dimensional data aggregation
	7. Multi-dimensional data analysis optimization
	8. Real-time scheduling with MapReduce
	9. Future for cloud computing
	Bibliography
	Back Cover



